1 / 12

Calculus II Ch 7 Section 2 Integrating Trig Functions with Powers

Calculus II Ch 7 Section 2 Integrating Trig Functions with Powers. David Dippel LoneStar College - Montgomery. 7.2 Trigonometric Integrals. In this section, we introduce techniques for evaluating integrals of the form. where either m or n is a nonnegative integer.

jael-benson
Télécharger la présentation

Calculus II Ch 7 Section 2 Integrating Trig Functions with Powers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Calculus IICh 7 Section 2Integrating Trig Functions with Powers David Dippel LoneStar College - Montgomery

  2. 7.2 Trigonometric Integrals In this section, we introduce techniques for evaluating integrals of the form where either m or n is a nonnegative integer

  3. Integrals Involving Sine and Cosine A. • If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosine. Then, expand and integrate. convert to cosine save for du odd

  4. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to sine. Then, expand and integrate. convert to sine save for du odd • If the powers of both the sine and cosine are even and nonnegative, make repeated use of the identities • to convert the integrand to odd powers of the cosine. Then, proceed as in case 2. • It is sometimes helpful to use the identity and

  5. Examples: Integrals Involving Sine and Cosine Evaluate the integral. 1) 2)

  6. 3)

  7. Integrals Involving Secants and Tangents B. • If the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining factors to secants. Then, expand and integrate. convert to secants save for du odd

  8. If the power of the secant is even and positive, save a secant squared factor and convert the remaining factors to tangents. Then, expand and integrate. convert to tangents save for du even • If there are no secant factors and the power of the tangent is even and positive, convert a tangent squared factor to secants; then expand and repeat if necessary. convert to secants

  9. 4. If the integral is of the form where n is odd and positive, possibly use integration by parts. 5. If none of the first four cases apply, try converting to sines and cosines.

  10. Examples:Integrals Involving Secants and Tangents 1) Power Rule 2) Power Rule

  11. 3) 4)

  12. Integrals Involving Cotangent and Cosecant NOTE: The guidelines for integrals involving cotangent and cosecant would be similar to that of integrals involving tangent and secant.

More Related