1 / 3

Born-Haber Cycles

Born-Haber Cycles. H bond energy of chlorine. Mg 2+ (g) + 2e - + 2Cl (g). Mg 2+ (g) + 2e - + Cl 2 (g). enthalpy H. H second ionisation energy. 2 x H first electron affinity. Mg + (g) + e - + Cl 2 (g). Mg 2+ (g) + 2Cl - (g). H first ionisation energy.

jalena
Télécharger la présentation

Born-Haber Cycles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Born-Haber Cycles H bond energy of chlorine Mg2+(g) + 2e- + 2Cl (g) Mg2+(g) + 2e- + Cl2(g) enthalpy H H second ionisation energy 2 x H first electron affinity Mg+(g) + e- + Cl2(g) Mg2+ (g) + 2Cl-(g) H first ionisation energy Mg (g) + Cl2 (g) H lattice H atomisation Mg (s) + Cl2(g) Mg (s) + Cl2 (g) H formation MgCl2(s) magnesium chloride

  2. Born-Haber Cycles H bond energy of chlorine Mg2+(g) + 2e- + 2Cl (g) Mg2+(g) + 2e- + Cl2(g) enthalpy H H second ionisation energy 2 x H first electron affinity Mg+(g) + e- + Cl2(g) Mg2+ (g) + 2Cl-(g) H first ionisation energy Mg (g) + Cl2 (g) H lattice H atomisation Mg (s) + Cl2 (g) H formation MgCl2(s) magnesium chloride

  3. Apply Hess’s Law to calculate ∆HLattice Energy for MgCl2setting out the values in a methodical manner: 1 = 2 + 3 + 4 + 5 + 6 + 7 -641 = +148 + 738 + 1451 + 242 + (2x-364) + ∆HLE -641 = + 1851 + ∆HLE ∆HLE = - 1851 - 641 = - 2492 kJ mol-1

More Related