1 / 17

Sandwich Construction

Sandwich Construction. Thin composite skins bonded to thicker, lightweight core. Large increase in second moment of area without weight penalty. Core needs good shear stiffness and strength. Skins carry tension and compression loads. .

jalene
Télécharger la présentation

Sandwich Construction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sandwich Construction • Thin composite skins bonded to thicker, lightweight core. • Large increase in second moment of area without weight penalty. • Core needs good shear stiffness and strength. • Skins carry tension and compression loads.

  2. Sandwich panels are a very efficient way of providing high bending stiffness at low weight. The stiff, strong facing skins carry the bending loads, while the core resists shear loads. The principle is the same as a traditional ‘I’ beam:

  3. Bending stiffness is increased by making beams or panel thicker - with sandwich construction this can be achieved with very little increase in weight:

  4. The stiff, strong facing skins carry the bending loads, while the core resists shear loads. Total deflection = bending + shear Bending depends on the skin properties; shear depends on the core

  5. Foam core comparison PVC (closed cell)- ‘linear’ – high ductility, low properties- ‘cross-linked’ – high strength and stiffness, but brittle- ~ 50% reduction of properties at 40-60oC- chemical breakdown (HCl vapour) at 200oC

  6. Foam core comparison PU- inferior to PVC at ambient temperatures- better property retention (max. 100oC) Phenolic- poor mechanical properties- good fire resistance- strength retention to 150oC

  7. Foam core comparison Syntactic foam- glass or polymer microspheres- used as sandwich core or buoyant filler- high compressive strength Balsa- efficient and low cost- absorbs water (swelling and rot)- not advisable for primary hull and deck structures; OK for internal bulkheads, etc?

  8. Why honeycomb? List compiled by company (Hexcel) which sells honeycomb!

  9. Sandwich constructions made with other core materials (balsa, foam, etc) have a large surface are available for bonding the skins. In honeycomb core, we rely on a small fillet of adhesive at the edge of the cell walls: The fillet is crucial to the performance of the sandwich, yet it is very dependent on manufacturing factors (resin viscosity, temperature, vacuum, etc).

  10. Honeycomb is available in polymer, carbon, aramid and GRP. The two commonest types in aerospace applications are based on aluminium and Nomex (aramid fibre-paper impregnated with phenolic resin). Cells are usually hexagonal: but ‘overexpanded’ core is also used to give extra formability:

  11. Core properties depend on density and cell size. They also depend on direction - the core is much stronger and stiffer in the ‘ribbon’ or ‘L’ direction:

  12. Aluminium generally has superior properties to Nomex honeycomb, e.g:

  13. Aluminum Honeycomb• relatively low cost• best for energy absorption• greatest strength/weight• thinnest cell walls• smooth cell walls• conductive heat transfer• electrical shielding• machinability Aramid Fiber (Nomex) Honeycomb• flammability/fire retardance• large selection of cell sizes, densities, and strengths• formability and parts-making experience• insulative• low dielectric properties

  14. Sandwich Construction • Many different possible failure modes exist, each of which has an approximate design formula.

More Related