860 likes | 1.28k Vues
Biology is living soft matter. Statistical description of random World . The collective activity of many randomly moving objectscan be effectively predictable, even if the individual motions are not.. Interacciones Fundamentales. Interacci
E N D
1. Termodinmica
4. Interacciones Fundamentales Interaccin Gravitacional (masa-masa)
Interaccin Electromagntica (carga-dipolo)
Interaccin Nuclear Dbil (electrones-ncleo)
Interaccin Nuclear Fuerte (protones-neutrones)
5. Los Sistemas Biolgicos son guiados fundamentalmente por Interacciones Electromagnticas Enlaces Covalentes
Enlaces No-covalentes (Interacciones Dbiles):
Puentes de Hidrgeno
Efecto Hidrofbico
Interacciones Inicas
Interacciones In-Dipolo
Interacciones Dipolo-Dipolo
Fuerzas de Van der Waals
6. Enlace Covalente
7. La Energa de Activacin es el resultado de la repulsin de las nubes electrnicas
8. Las interacciones Inicas se dan entre partculas cargadas
9. Participacin de los Puentes de Hidrgeno:Replicacin, Transcripcin y Traduccin
10. Las interacciones dbiles dirigen el proceso de docking molecular
11. El efecto hidrofbico colabora en el plegamiento de las protenas
12. Which is colder? Metal or Wood?
13. Temperatura Es la medida de la energa cintica interna de un sistema molecular
14. 11.3 Temperature Measured in Fahrenheit, Celsius, and Kelvin
Rapidly moving molecules have a high temperature
Slowly moving molecules have a low temperature
16. What is absolute zero?
17. Temperature Scales
18. Calor Es la energa cintica que se propaga debido a un gradiente de temperatura, cuya direccin es de mayor temperatura a menor temperatura
19. Entropa S = K Ln(W)
La entropa es la medida del grado de desorden de un sistema molecular
20. Entalpa H=E+PV
La entalpa es la fraccin de la energa que se puede utilizar para realizar trabajo en condiciones de presin y volumen constante
dH<0 proceso exotrmico
dH>0 proceso endotrmico
21. Energa Libre G=H-TS
La energa libre es la fraccin de la energa que se puede utilizar para realizar trabajo en condiciones de presion, volumen y temperatura constante
dG<0 proceso exergnico (espontneo)
dG>0 proceso endergnico
24. 11.4 Pressure Pressure - force per unit area
It has units of N/m2 or Pascals (Pa) change impact and weight to something cool like bevo...
change impact and weight to something cool like bevo...
25. Pressure What are the possible units for pressure?
N/m2
Pascal 1 Pa = 1 N/m2
atm 1 atm = 1 105 Pa
psi 1 psi = 1 lb/inch2
mm Hg 1 atm = 760 mm Hg
change impact and weight to something cool like bevo...
change impact and weight to something cool like bevo...
27. 11.5 Density Density - mass per unit volume
It has units of g/cm3 fill boxes
fill boxes
28. 11.6 States of Matter
30. Questions Is it possible to boil water at room temperature?
Answer: Yes. How?
Is it possible to freeze water at room temperature?
Answer: Maybe. How?
31. Gas Laws Perfect (ideal) Gases
Boyles Law
Charles Law
Gay-Lussacs Law
Mole Proportionality Law
32. Boyles Law
33. Charles Law
34. Gay-Lussacs Law
35. Mole Proportionality Law
36. Perfect Gas Law The physical observations described by the gas laws are summarized by the perfect gas law (a.k.a. ideal gas law)
PV = nRT
P = absolute pressure
V = volume
n = number of moles
R = universal gas constant
T = absolute temperature
37. Table 11.3: Values for R
38. Work Work = Force Distance
W = F Dx
The unit for work is the Newton-meter which is also called a Joule.
39. Types of Work
40. Mechanical Work
41. Mechanical Work
42. Hydraulic Work
43. Joules Experiment
44. 11.11 Energy Energy is the ability to do work.
It has units of Joules.
It is a Unit of Exchange.
Example
1 car = $20k
1 house = $100k
5 cars = 1 house
45. 11.11 Energy Equivalents What is the case for nuclear power?
1 kg coal 42,000,000 joules
1 kg uranium 82,000,000,000,000 joules
1 kg uranium 2,000,000 kg coal!!
46. 11.11 Energy Energy has several forms:
Kinetic
Potential
Electrical
Heat
etc.
47. Kinetic Energy Kinetic Energy is the energy of motion.
Kinetic Energy = mass speed2
48. Potential Energy The energy that is stored is called potential energy.
Examples:
Rubber bands
Springs
Bows
Batteries
Gravitational Potential PE=mgh
50. 11.11.3 Energy Flow Heat is the energy flow resulting from a temperature difference.
Note: Heat and temperature are not the same.
51. Heat Flow
52. 11.12 Reversibility Reversibility is the ability to run a process back and forth infinitely without losses.
Reversible Process
Example: Perfect Pendulum
Irreversible Process
Example: Dropping a ball of clay
53. Reversible Process Examples:
Perfect Pendulum
Mass on a Spring
Dropping a perfectly elastic ball
Perpetual motion machines
More?
54. Irreversible Processes Examples:
Dropping a ball of clay
Hammering a nail
Applying the brakes to your car
Breaking a glass
More?
55. Example: Popping a Balloon
56. Sources of Irreversibilities Friction (force drops)
Voltage drops
Pressure drops
Temperature drops
Concentration drops
58. Second Law of Thermodynamics
naturally occurring processes are directional
these processes are naturally irreversible
59. Heat into Work