1 / 24

TRD Technology at ALICE

TRD Technology at ALICE. Matthias Hartig Johann-Wolfgang Goethe Universität Frankfurt/Main. Overview. ALICE Experiment ALICE TRD Chamber Design Front End Electronic Performance TRD Overview HERMES TRD NOMAD TRD AMS TRD Summary / Outlook. Large Hadron Collider.

jaunie
Télécharger la présentation

TRD Technology at ALICE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TRD Technology at ALICE Matthias Hartig Johann-Wolfgang Goethe Universität Frankfurt/Main

  2. Overview • ALICE Experiment • ALICE TRD • Chamber Design • Front End Electronic • Performance • TRD Overview • HERMES TRD • NOMAD TRD • AMS TRD • Summary / Outlook

  3. Large Hadron Collider Mont Blanc Genf CERN

  4. HMPID PID (RICH) @ high pt TOF PID TRD Electron ID TPC Tracking, PID ITS Vertexing Low pt tracking MUON m-pairs PMD g multiplicity PHOS g,p0 ALICE Experiment FMD, V0, T0, ZDC (not shown) Trigger, multiplicity, centrality EMCAL(not shown) Jet-calorimetry

  5. The ALICE Experiment

  6. ALICE ExperimentRequirements • Robust tracking performance • Needs to digest highest multiplicities (O(105) tracks !) • Need to cover low pt region (~100 MeV/c ) • Soft physics important for event characterization • But the high pt region as well (>100 GeV/c ) • Hard probes transmit information about early phase • Good PID capabilities over large pt-range essential • Many effects are flavour dependent • Sensitivity to rare probes • Heavy flavour, quarkonia, photons, ...

  7. ALICE ExperimentPID Capabilities (relativistic rise) TPC: (dE/dx) = 5.5(pp) – 6.5(Pb-Pb) % TOF:  < 100 ps TRD:  suppression  10-2 @ 90% e-efficiency

  8. Produced by fast charged particles crossing the boundary between materials with different dielectrical constants production probability ~a = 1/137 per boundary Characteristic: energy spectrum in keV region angel of emission ~1/g Spectrum determined by: number and distance of the surfaces thickness and plasmafrequence of the material Velocity of the charged particle (g > 1000) Radiator: Regular foils Fibre material Foam Transition Radiation DetectorTransition Radiation Measured spectrum of 2 GeV/c electrons

  9. Transition Radiation DetectorSchematic View • Radiator: • irregular structure • - Polypropylen fibers • - Rohacel foam (frame) • 4.8 cm thick • self supporting • Gas: • Xe/CO2 85/15 % • Drift region: • 3 cm length • 700 V/cm • 75 mm CuBe wires • Amplification region: • W-Au-platedwires 25 mm • gain ~ 10000 • Readout: • cathode pads • 8 mm (bending plane) • 70 mm in z/beam-direction • 10 MHz

  10. Transition Radiation DetectorDesign • Large area chambers (1-1,7 m²) • -> need high rigidity • Low rad. length (15%Xo) • -> low Z, low mass material

  11. TOF supermodule TRD Supermodule Transition Radiation DetectorSetup TRD Supermodul • TRD in Numbers: • 540 Chambers • 6 Layers • 18 Sectors (Supermodule) • Total Area: 736 m2 • Gasvolume: 27,2 m3 • Auflösung (r) 400 mm • Number of Readout Channels: 1,2 Millionen TPC

  12. Electron Identification PerformanceResult of Test Beam Data Typical signal of single particle LQ Method: Likelihood with total charge LQX Method: total charge + position of max. cluster PID with neural network • e/-discrimination< 10-2 • For 90% e-efficiency

  13. Readout Board (ROB) • 8 (6) ROBs per chamber • 7 different ROBs • 16+1 MCM per Board • Readout of 18 channels per MCM 2 x Optical Readout Interfaces Detector Control System Front End ElectronicOverview

  14. Front End ElectronicReadout Board / Multi-chip Module • Analog part (PASA): • Preamplifier/shaper • Convrsion gain 12.4 mV/fC • Shaping time 120 ns (FWHM) • Equivalent noise ~700 e • Digital Part (TRAP): • ADC • Preprocessor, digital filters • Hit selection • Tracklet processing at 120 MHz 160cm 120cm • 260 000 CPUs working in parallel during readout • Measured Noise on the chamber ~1200 e

  15. Front End ElectronicDetector Control System • 1 DCS board per chamber: • FPGA and ARM core running Linux OS • Control of voltage regulators • MCM configuration • Clock and trigger distribution • Also used for other detectors 160cm

  16. Front End ElectronicOptical Readout Interface • 2 ORI boards per chamber: • Connects 4 (3) ROBs to GTU • High speed readout: 2.5 GBit optical link 160cm 120cm

  17. TRD TriggerOnline Tracking • Challenges: • tracking of all charge particles • time budget of 6.1 ms • Trigger Requirements: • electron and electron pairs • with high pt (> 2GeV/c) • Local Tracking Unit (LTU) • on each chamber • linear tracklets fit • ship tracklets to GTU • Global Tracking Unit (GTU) • find high momentum tracks through all 6 layers • generate trigger

  18. Offline TRD TrackingStandalone Track Resolution • Cluster reconstruction: • charge sharing between pads • pad response function • tail cancellation • TR absorption • Track position • Track angel • In bending plane: • Hit resolution < 400 mm (for each time bin) • Angular resolution < 1 deg. (for each plane) • Track angular resolution: < 0.4 deg.

  19. Offline Tracking PerformanceEfficiency and Resolution for Pb+Pb • Efficiency: • high software track-finding efficiency • lower combined track efficiency • (geometrical acceptance, particle decay ) • Efficiency independent of track multiplicity dNch/dy = 6000 • Momentum resolution: • long lever arm ITS + TPC +TRD (4cm <r<370cm) • resolution better for low multiplicity (p+p) • pt/pt  5 % at 100 GeV/c and B = 0.5 T

  20. HERMES TRDLepton Scattering Experiment • DIS measurement at 27 GeV at HERA • electron identification: • TRD, preshower, calorimeter • (RICH,TOF)

  21. HERMES TRDLepton Scattering Experiment • Aktive area 0.75 x 3.25 m2 • 2 x 6 modules • Irregular radiator • polypropylen fibers • 6.35 cm thick • Readout • MWPC • flexible windows • Gaps to keep MWPC thickness • 90/10 % Xe/CH4 • Result: • dismantled 2007 • PRF > 102 for > 2 GeV/c • more than 10 years successful operation

  22. NOMAD TRDNeutrino Oscillation Experiment • Appearance of nm -> nt • nt + N-> t- + X • t- -> e- + ne +nt • Background from ne in neutrino beam • Total pion rejection > 105 at 90% electron efficienty at 1-50 GeV/c • TRD 103,preshower, EM calorimeter • End of operation 1999 • Aktive Area 2.85 x 2.85 m2 • 9 modules • Regular radiator • 315 polypropylen foils • 15 mm thick • 250 mm space • Readout • 176 straw tubes • 3 m long • 16 mm diameter • 80/20 % Xe/CH4

  23. AMS TRDAntimatter Search in the Universe • Space based Detector • AMS 1: space shuttle • AMS 2: 3 y on the ISS • 6 modules • Irregular radiator • polypropylen fibers • 2.00 cm thick • 80/20 % Xe/CH4

  24. Summary ALICE TRD chambers 80 % ready FEE Integration / SM production 30 % ready MCM configuration needs fine tuning 4 SM installed At least 3 successful TRDs TRD powerful tool to identify electrons from 1 – 100 GeV/c Summary / Outlook Outlook • Gas detector for TR measurement ? • Slow • Xe is expensive • Xe difficult to get • New development of radiator material ?

More Related