1 / 22

Searching Indexed Bilingual Knowledge Banks

Searching Indexed Bilingual Knowledge Banks. by Kee Tuan Hwa. Outline. Introduction Proposed Method Summary. Introduction. Types of machine translation - Rules-based machine translation - Knowledge-based machine translation

javan
Télécharger la présentation

Searching Indexed Bilingual Knowledge Banks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Searching Indexed Bilingual Knowledge Banks by Kee Tuan Hwa

  2. Outline • Introduction • Proposed Method • Summary

  3. Introduction • Types of machine translation - Rules-based machine translation - Knowledge-based machine translation - Statistical-based machine translation - Example-based machine translation (EBMT)

  4. EBMT Architecture • Source • Find the best matching in the bilingual corpus

  5. EBMT Architecture (cont.)

  6. EBMT Architecture (cont.)

  7. EBMT Architecture (cont.) Recombination

  8. Examples of EBMT • Gaijin System - Uses a bilingual lexicon and transfer rules • MSR-MT - Uses MindNet, logical form

  9. Weaknesses

  10. Weaknesses • “a finite means for generating the potential infinity of linguistic forms a speaker-hearer can produce or recognize” (Chomsky,1928)

  11. The size of BKB is big, it will take time to perform searching. The graph complexity is exponential, O(n)=en Weaknesses 30k of S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC

  12. Poor classification of S-SSTC in the Bilingual knowledge Bank (BKB) Weaknesses S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC S-SSTC

  13. Goal and Objective • Classification of STREE and SNODE correspondence in BKB for effective retrieval and translation

  14. Proposed System Design

  15. Index Construction

  16. Indexed BKB Indexed S-SSTC Indexed BKB Indexed S-SSTC Indexed S-SSTC Indexed S-SSTC Indexed S-SSTC Indexed S-SSTC

  17. Pivot BKB • Pivot BKB - clustering the S-SSTC - categorize the SNODE, STREE based on pattern-based POS - use the modification of inverted file indexing

  18. Pivot BKB (cont.) I[P] see[V] the[Det] big[Adj] bird [N] saya[P] lihat[V] burung[N] besar[Adj] itu[Det] SNODE CORRESPONDENCE 1.5.1 I [P] saya [P] 1.5.2 see [V] lihat[V] 1.5.3 the [Det] itu [Det] 1.5.4 big [Adj] besar[Adj] 1.5.5 bird [N] burung[N] Stree CORRESPONDENCE 1.6.1 [P] [V] [Det] [Adj] [N]  [P] [V] [N] [Adj] [Det] I see the big bird saya lihat burung besar itu 1.6.2 [V] [Det] [Adj] [N]  [V] [N] [Adj] [Det] see the big bird  lihat burung besar itu 1.6.3 [Det] [Adj] [N]  [N] [Adj] [Det] the big bird  burung besar itu Name of Indexed BKB = a.xml

  19. Pivot BKB (cont.) Name of Indexed BKB Sense of SNODE <P> <V> - I ,<a.xml;1.5.1|2> - see ,<a.xml;1.5.2|2> Index of SNODE <Det> <Adj> - the ,<a.xml;1.5.3|1> - big ,<a.xml;1.5.4|4> <N> Name of Indexed BKB - bird ,<a.xml;1.5.5|3> <[P] [V] [Det] [Adj] [N]> <[V] [Det] [Adj] [N]> - I see the big bird ,<a.xml;1.6.1> - see the big bird ,<a.xml;1.6.2> Index of STREE <[Det] [Adj] [N]> - the big bird ,<a.xml;1.6.3>

  20. Pivot BKB (cont.) the[Det] old[Adj] man[N] walked [V]  orang[N] tua[Adj] ini[Det] berjalan[V] SNODE CORRESPONDENCE 2.5.1 the[Det]  ini [Det] 2.5.2 old[Adj]  tua [Adj] 2.5.3 man[N]  orang [N] 2.5.4 walked [V]  berjalan [V] Stree CORRESPONDENCE 2.6.1 [Det] [Adj] [N] [V]  [N] [Adj] [Det] [V] the old man walked  orang tua ini berjalan 2.6.2 [Det] [Adj] [N]  [N] [Adj] [Det] the old man  orang tua ini Name of Indexed BKB = a.xml

  21. Pivot BKB (cont.) <P> <V> - I ,<a.xml;1.5.1|2> - see ,<a.xml;1.5.2|2> - walked ,<a.xml;2.5.4|1> <Det> <Adj> - the ,<a.xml;1.5.3|1> - big ,<a.xml;1.5.4|4> - the ,<a.xml;2.5.1|2> - old ,<a.xml;2.5.2|1> <N> - bird ,<a.xml;1.5.5|3> - man ,<a.xml;2.5.3|2> <[P] [V] [Det] [Adj] [N]> <[V] [Det] [Adj] [N]> - I see the big bird ,<a.xml;1.6.1> - see the big bird ,<a.xml;1.6.2> <[Det] [Adj] [N]> <[Det] [Adj] [N] [V]> - the big bird ,<a.xml;1.6.3> - the old man walked ,<a.xml;2.6.1> - the old man ,<a.xml;2.6.2>

  22. Summary • size(n)∝1/speed(n) • Classification and indexing to perform effective retrieval and translation

More Related