1 / 42

Global Trigger Development and Layout Updates

This update provides information about the layout and development progress of the Global Trigger system. It includes details about board designs, input synchronization, logic calculations, decision-making processes, and timing. Updates on the GTL, FDL, TCS, and other components are discussed. Milestones for the year 2002 and beyond are outlined.

jcornett
Télécharger la présentation

Global Trigger Development and Layout Updates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Globaler Trigger Globaler Müontrigger Regionaler Müontrigger (DTTF f und h) Trigger Control System Softwareentwicklung ORCA Triggerstudien Arbeiten in PRS Müongruppe Apr. 2002: CPT Week Triggeraktivitäten

  2. Board Layout of the Global Trigger Processor PSB (Pipeline Synchronizing Buffer) Input synchronization (7 boards including GMT) GTL (Global Trigger Logic) Logic calculation (1-2 boards) FDL (Final Decision Logic) L1A decision (1 board) TCS (Trigger Control System Module) Trigger Control (1 board) NEW: L1A (Level-1 Accept Module) Delivery of L1A (1 board) TIM (Timing Board) Timing (1 board) GTFE (Global Trigger Frontend) Readout (1 board) A. Taurok, C.-E. Wulz M. Padrta, H. Bergauer, K. Kastner

  3. New layout of Global Trigger 9U Crate

  4. Main Global Trigger Rack

  5. GTL-6U • GTL-6U Automatic chip design and setup procedure developed. Layout for a 20 channel GTL (4 , 4 isol. e/, 4 central jets, 4 fwd jets, SET, ETmiss, 8 jet multiplicities; other quadruplets can be connected alternatively for tests) is currently being finished. 1020-pin Altera FPGA 20k400E not yet included. The layout of a conversion board to be used later in final 9U-crate is ready. It contains also memories in FPGA’s to send simulated test data to the GTL-6U board. A decision on a possible redefinition of jet input groups has been taken. It was decided to keep the present best 4 central jets, 4 forward jets and 4 t-jets and jet multiplicities for different ET thresholds. A new quantity HT giving the transverse energy sum of all good jets above threshold has been added. The exact definition of how to calculate the jet multiplicities (h-range) still has to be taken at the level of the calorimeter trigger. More than 8 values could be necessary.

  6. GTL-9U New: HT

  7. GTL-6U Prototype Schematics Design simplified, board available by Oct. 2002

  8. FDL-9U Schematic and chip design in progress. Board available by Oct. 2002. • Monitoring of all algorithm and L1A bits • Prescaling of all algorithms • Trigger Mask • 8 L1A’s in parallel for partition modes • Input of up to 64 technical trigger bits from PSB possible

  9. TIM-6U • TIM-6U:The board contains a TTCrx chip and provides all timing signals for the GT crate. It will also be used in the Drift Tube Track Finder crates. An FPGA provides all necessary test functions to run the crate without the central TTC clock. It simulates also L1A requests for monitoring or to test the readout chain. The schematic design is finished. The layout is on hold until May 2002 due to TTCrx jitter problems. We would prefer to keep the TTCrx as a mezzanine board with interconnections identical to current board. The final Timing Board will be 6U (previously 9U).

  10. TIM-6U

  11. TCS-9U • TCS-9U: The main functions are defined but the design is still open for additional requests (calibration logic etc.). The board is expected by Oct. 2002. Trigger Partitions: The maximum number of subsystems is fixed (32). A preliminary agreement about the output to the DAQ Event Manager has been reached. The input format of Fast Signals is now fixed. 4 coded bits per subsystem, sent as LVDS parallel data, and RJ45 connectors are proposed. The TCS board provides data for the new ”CMS-TTCvi”. A L1A driver module to be used with the CMS-TTCvi has been conceived.

  12. TCS-9U environment

  13. Global Trigger Milestones 2002 • Milestone March 2002:System Test -> Delayed to Oct. 2002 This includes the backplane, the PSB-6U, GTL-6U, FDL-9U and TIM-6U. The GTFE and the GMT are not included. • Milestone July 2002:TCS-6U tested -> Delayed to Oct. 2002 • Milestone Oct. 2002:Backplane-9U tested -> OK

  14. Global Trigger Milestones beyond 2002 • Milestone June 2003: Complete GT prototype available • Integration tests possible from this date. • GTFE-9U: Conceptual design of readout board done. • Milestone July 2004:12-channel PSB-9U available • PSB-9U: Conceptual design done. Will have memories inside FPGA’s. • Milestone Nov. 2004: Complete GT available • Includes GTL-9U module with all input channels (4 , 4 isol. e/, 4 non-isol. e/ , • 12 jet channels, HT , SET, ETmiss, jet multiplicities). The Global Muon Trigger will have been completed by Nov. 2003.

  15. Barrel-Endcap Overlap Region ME1/3 • Notwendig für hohe Effizienz: • Verwendung von MB2/1 Segmenten im CSC TF • Verwendung von ME1/3 Segmenten im DT TF • Ghosting (Duplikation) entsteht, wenn … • DT und CSC Trigger das selbe Muon finden • dasselbe Muon einmal im Barrel (z.B. DT) und einmal im Endcap (z.B. forward-RPC) gefunden wird • problematisch für Di-Muon-Trigger • Szenarien zur Verhinderung von Duplikation wurden untersucht • Auf Ebene der DT und CSC Trigger Track Finder • Optimierung der Zuordnung von Segmenten in ME1/3 zu DT und CSC Trigger • Cancel-Out Schema mit 1 Tag-Bit pro CSC-Segment in ME1/3 • Cancel-Out Schema mit 1 Tag Bit pro DT-Segment in MB2/1 • Auf Ebenedes Global Muon Triggers • Bestätigung von DT/CSC Muonen durch RPC • DT/CSC Cancel-Out Hardware Unit MB2/1 H. Sakulin

  16. Szenario Effizienz (*) Ghosts (*) Cancel-Out nurauf Track-Finder Level (bestes Szenario) 91.7 % 2.22 % GMT: Bestätigung durch RPC 88.3 % 0.04 % GMT: Cancel Out Hardware Unit 92.5 % 0.42 % Barrel-Endcap Overlap Region • Effizienz und Ghosts mit verschiedenen Szenarien • DT/CSC Cancel-Out Hardware Unit im Global Muon Trigger ist notwendig • inkludiert in GMT Hardwaredesign • inkludiert in ORCA-Simulation • CMS Internal Notes • CMS Internal Note 2002/024, H. Sakulin, “A Robust Solution to the Ghosting Problems of the CMS L1 Trigger in the Barrel/Endcap Overlap Region” • CMS Internal Note (in preparation), D. Acosta et al., “Specification of the Interface between DT and CSC Level-1 Track Finders” (*) Effizienz und Ghosts in der Overlap Region 0.9 < |h| < 1.2

  17. Pile-Up ohne Muonen Interaktionen mit Muonen, bins in muon-pT PU ORCA jobs fz oohit CMSIM pt1 digi trig fz oohit pt4 CMSIM MIX fz oohit pt10 CMSIM grosses Sample von Bunch Crossings modifiziertes ORCA: einzelne Interaktionen werden ueberlagert Neue Methode zur Behandlung von Pile - up in der Simulation Überlagerung von verschiedenen Interaktionen ( mit Muonen ) im selben Ø Bunch Crossing wird korrekt simuliert Am besten möglich in der ORCA- Digitalisierung Ø Modifikation von ORCA erforderlich ð Soll für 2002 Muon-Monte-Carlo- Produktion verwendet werden ð CMS Internal Note (in Vorbereitung): H. Sakulin: , “Obtaining single- and di- Ø muon trigger rates from monte -carlo samples”

  18. Drift Tube Trigger Track Finder DTTF-Sektorprozessorkarte - wurde mit der ganzen Funktionalität simuliert (Input Receiver Module inbegriffen) - vollständig in Behavioral VHDL - generell funktionell mit Chip-VHDL-Modellen - Schaltung wurde entwickelt und zur Layout-Entwicklung an CERN weitergeschickt - Bauteile bestellt - Automatische Erzeugung der Lookup-Tables (M. Fierro) h Track Finder - VHDL Modell weiterentwickelt und die Verknüpfungen ausgebaut - Testbench mit Ein- und Ausgangsmodulen ergänzt, welche getestet wurden - Board-level Funktionalitätstests mit VHDL Modell durchgeführt (Synchronisationsprobleme nicht vollständig beseitigt) Interface-Fragen gelöst ... - Interface zwischen lokaler Triggerelektronik für j (Padova/Bologna) - Interface zwischen lokaler Triggerelektronik für h (Bologna) J. Erö, Ch. Deldicque

  19. h Track Finder Software • Implementierung des h Track Finders in ORCA • Entwicklung von stand-alone Software zur Erzeungung der • Look-up Tables • Erzeugung von neuen Look-up Tables N. Neumeister

  20. DTTF-Prototypenentwicklung Hardware - Backplane wurde entwickelt, Layout in Wien gemacht - 9U Crate entspechend der CERN-Spezifikation gekauft - neue Eingangskarten entsprechend den DTTF Karten entwickelt und gebaut - neue, mit breiteren Datensätzen funktionierende Ausgangskarten entwickelt, Schaltung fertig, Layout-Entwicklung folgt bald Vorbereitung für baldigen Test - Testsystem-PC für VME ausgetauscht, Programme neu installiert - neue Programmversionen eingesetzt und alte Karten getestet - Logikanalysator gekauft - Untersuchung von verschiedenen Methoden zur Entwicklung von Prototypen- Testsoftware Milestone März 2002:DTTF-Prototyp getestet -> Neu: Jan. 2003

  21. DTTF Test Setup

  22. Karten für Test Setup J. Erö, Ch. Deldicque

  23. Global Trigger ORCA Simulation • The L1 Global Trigger System is simulated by an ORCA package (starting from ORCA version 5) • Trigger/L1GlobalTrigger • Hardware system features are simulated • …except Delta conditions (topological correlations among different classes of trigger objects) and new HT/jet counts • Persistency of trigger objects is provided • Official documentation is available on the usual ORCA Software description pages M. Fierro

  24. Implementing an algorithm: syntax • Each algorithm is made up of particle blocks of different kind: • MU, EL, IE, CJ, FJ, TJ, ET, EM, JN • Each block is numbered to have a one-to-one connection with its own condition settings (up to 64 different blocks per particle can be set): • MU_00, EL_01, FJ_01, EM_63,... • An algorithm is a combination of particle blocks, connected by .AND. ( & ), .OR. (|) conditions: MU_00&EM_00 | EL_00&EM_00

  25. Implementing an algorithm: syntax User can provide algorithms in three different ways: • Use the default implemented algorithms • Write a file named trigger_menu.dat • One algorithm per line • Blank line allowed • This overrides the default Trigger Menu algorithms • Add one algorithm to the default • Via adding a line in the .orcarcfile L1GlobalTrigger:Algorithm MU_00&EM_00|EL_00&EM_00

  26. Implementing an algorithm: thresholds For each particle block, user must provide a list of conditions by the WriteThresholdutility • It is an interactive tool that writes a file for each specified block • Users are asked for which block they want to provide conditions and then they are asked to specify the conditions themselves • User can modify conditions for the default implemented algorithms • If WriteThresholdis not invoked for a certain block, the conditions for that specific block are set to the default values (now defaults are set to “don’t care” values)

  27. L1GlobalTrigger output • The output of L1GT is the Level 1 Trigger Accept word, a string of 128 bits. Each bit corresponds to the output of one algorithm. • User can select whether to check the overall L1 accept “signal” or a specific algorithm bit

  28. Persistency • The information for each trigger object is saved per event, in form of BitArray • 24 bit for each muon candidate • typedef BitArray(24) MuonDataWord • 32 bit for each calorimeter object (req. from L1Calo Group) • Actually in the code only 21 bit words are used, following the hardware specifications • typedef BitArray(21) CaloDataWord • L1Accept word is saved as well • BitArray(128)

  29. Persistency • User code can access the particle information via L1GlobalTrigger methods: • CaloDataWord getElectrons(int i) • MuonDataWord getMuons(int i) • Methods are provided to ‘convert’ BitArray information into usual particle parameters (ET, pT, h,…) • The L1GlobalTrigger code itself can run on the database, updating it according to whether the user modified particle conditions/algorithm definitions

  30. L1 GT Efficiency Studies for some Physics Channels • The samples for 4 channels have been: • generated with PYTHIA 6.136 (1000 events per channel) • simulated with CMSIM121 • Hit-formatted and digitized with ORCA_5_3_2 • Pile-up for high luminosity has been added • The samples have then been processed with L1GlobalTrigger • The thresholds for calculation of efficiencies of individual algorithms are taken as for calculation of muon, calo and combined rates by M. Fierro and P. Chumney for 4 different DAQ scenarios: 75 kHz, 50 kHz, 37.5 kHz, 25 kHz. L. Boldizsar, A. Jeitler, N. Neumeister, P. Porth, L. Rurua, H. Rohringer, C.-E. Wulz

  31. Samples used for current analysis H250:HSM  WW ll (leptonic decay) MH= 250 GeV/c2 HSM WW ljj (semileptonic decay) H800:HSM  WW ll (leptonic decay) MH= 800 GeV/c2 HSM WW ljj (semileptonic decay) SUSY1: l + Et miss. + jets TTH150: l +Et miss. + jets + -jet

  32. Efficiencies are calculated for 4 different DAQ bandwidth scenarios: 75kHz, 50kHz, 37.5kHz, 25kHz 1. Algo single muon 27.48, 25.48,22.87, 22.07 2. Algo di-muon 12.34, 12.34, 13.24, 12.34 3. Algo muon-ieg 13.54, 13.14,11.63, 10.93 4. Algo muon-tau-jet 24.77, 23.87, 21.36, 19.36 5. Algo muon-any-jet 40.82, 38.62,34.90, 32.50 6. Algo muon-et_total 41.42, 39.21, 35.51, 33.10 7. Algo muon-et_miss 40.12, 37.91,34.30, 31.99 8. Algo single ieg 12.84, 12.84,12.84, 11.94 9. Algo di-ieg 4.01, 4.01,4.01, 1.60 10.Algo single tau-jet 51.05, 51.05,48.75, 39.72 11.Algo di-tau-jet 20.86, 16.95,18.45, 16.95 12.Algo single jet 96.79, 96.79, 94.28,94.28 13.Algo double jet 89.67, 89.67, 84.95, 84.95 14.Algo triple jet 66.50, 63.39, 63.39, 63.39 15.Algo quad jet 50.35, 34.50,34.50, 34.50 16.Algo ieg-any jet 30.99, 19.26,19.26, 19.26 17.Algo ieg-tau jet 20.06, 13.24,12.74, 12.24 18.Algo et_miss 87.56, 87.56, 87.56, 87.56 19.Algo ieg-et_miss 30.39, 15.04,15.04, 15.04 20.Algo any jet-et_miss 96.29, 93.18, 93.18, 93.18 21.Algo et_total 83.75, 83.75, 83.75, 83.75 Total efficiency: 99.8, 99.7,99.4, 99.2% SUSY1lepton + ETmiss + jets

  33. Efficiencies are calculated for 4 different DAQ bandwidth scenarios: 75kHz, 50kHz, 37.5kHz, 25kHz 1. Algo single muon 26.9, 25.6,22.9, 22.1 2. Algo di-muon 6.8, 6.8, 7.4, 6.8 3. Algo muon-ieg 12.7, 11.9,10.9, 10.1 4. Algo muon-tau-jet 19.7, 18.9, 17.8, 14.5 5. Algo muon-any-jet 16.2, 15.4,14.7, 13.8 6. Algo muon-et_total 19.1, 18.0, 16.8, 15.5 7. Algo muon-et_miss 21.9, 21.2,20.2, 19.1 8. Algo single ieg 21.6, 21.6,21.6, 19.0 9. Algo di-ieg 5.5, 5.5,5.5, 1.8 10.Algo single tau-jet 46.1, 46.1, 41.2, 24.8 11.Algo di-tau-jet 17.2, 10.5,12.5, 10.5 12.Algo single jet 33.2, 33.2, 19.7,19.7 13.Algo double jet 17.4,17.4,9.9,9.9 14.Algo triple jet 8.6, 6.7, 6.7, 6.7 15.Algo quad jet 7.6, 2.0,2.0, 2.0 16.Algo ieg-any jet 20.9, 16.3,16.3, 16.3 17.Algo ieg-tau jet 29.1, 23.1,20.1, 18.2 18.Algo et_miss 14.4,14.4,14.4,14.4 19.Algo ieg-et_miss 23.6, 15.1,15.1, 15.1 20.Algo any jet-et_miss 52.7, 27.3, 27.3, 27.3 21.Algo et_total 3.0,3.0,3.0,3.0 Total efficiency: 86.5, 79.9, 76.6, 70.8% l +ETmiss + jets + -jet

  34. ~ ~ l±-> c10l± Sleptons  m+m- + ET miss + no jets This channel has been generated and processed with ORCA_6_0_1 The efficiencies for best 3 algorithms for 4 different DAQ scenarios are: single muon 96.3%, 96.0%, 95.6%, 95.2% di-muon 74.0%, 74.0%, 74.8%, 74.0% muon-ETmiss 14.2%, 14.2%, 14.2%, 14.2% TOTAL EFFICIENCY  96.8%, 96.6%, 96.4%, 96.3%

  35. HLT-Simulation und Müonrekonstruktion • Simulation + Rekonstruktion: • Detaillierte Detektorsimulation • Präzise Simulation (auf Bit-Level) der Triggerelektronik des Level-1 • Müonrekonstruktion und -selektion (High Level Trigger) • Level-2:verwendet nur Müonkammern (Stand-alone Rekonstruktion) • Level-3:inkludiert Trackerinformation (benützt also Müonkammern, Kalorimeter und Tracker) • Aktivitäten: • Berechnung von Triggerraten (Level-1, Level-2, Level-3) • Effizienzstudien für interessante Signale (Higgs, SUSY, etc.) • Bereitstellung von realistischen “Triggermenüs” für niedrige und hohe Luminositäten • Kombination von Schwellen, Raten und Effizienzen

  36. Level-1 Level-2 Level-3 Müonimpulsauflösung im Trigger Auflösung in 1/pT L3-Algorithmus für hohe Luminosität in Arbeit N. Neumeister

  37. Müonraten • Für eine Schwelle von 20 GeV/c: • Rate hauptsächlich von (b/c) (~100 Hz) • W/Z-Rate: 15 Hz für pT > 20 GeV/c

  38. L1/L2/L3-Müonraten Mit der Auflösung des Level-3: Rate kommt ~ von prompten Müonen

  39. DAQ Output • Auszug aus Triggermenü mit Schwellen für 2x1033cm-2s-1

  40. Neuer Zeitplan für CMS • CMS Zone geschlossen: 1. April 2007 • CMS Physikdatennahme: Ende Aug. 2007

  41. Zusammenfassung Globaler Trigger - Hardware PSB-6U und Backplane-6U fertig Layout der GTL-6U-Karte in Arbeit, Konversionskarte für 9U-Crate fertig Timing Modul entworfen, Layout verzögert L1A Driver Board: Design fertig FDL Modul und Backplane-9U erwartet im Okt. 2002 Design des TCS-Systems adaptiert, TCS Modul erwartet im Okt. 2002 Crate und Rack Layout geändert GT und h TF Software in ORCA 6 eingebaut Effizienzstudien für bestimmte Kanäle durchgeführt Overlap Region: Studien abgeschlossen GMT: FPGA Design kann beginnen DTTF: Prototyp bald fertig L1-Softwarekoordination HLT: Triggermenü, Müonrekonstruktion

More Related