1 / 43

ECE 802-604: Nanoelectronics

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu. Lecture 23, 19 Nov 13. Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp 2 : electronic structure

jeanne
Télécharger la présentation

ECE 802-604: Nanoelectronics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 802-604:Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

  2. Lecture 23, 19 Nov 13 Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp2: electronic structure E-k relationship/graph for polyacetylene E-k relationship/graph for graphene E-k relationship/graph for CNTs R. Saito, G. Dresselhaus and M.S. Dresselhaus Physical Properties of Carbon Nanotubes VM Ayres, ECE802-604, F13

  3. Polyacetylene E-k: E -kx kx VM Ayres, ECE802-604, F13

  4. To really finish: Need to model the wavefunctions: Could let f = |2px> Could let f = |p> (f = |sp2> is the s-bond) ECE 802-604: Use this result, p.24: t = -1.0 s = +0.2 e2p = 0.0 VM Ayres, ECE802-604, F13

  5. Real space VM Ayres, ECE802-604, F13

  6. Two different spring constants:tighter k1 (double bond) and looser k2 single bond k1 k2 VM Ayres, ECE802-604, F13

  7. Graphene E-k: VM Ayres, ECE802-604, F13

  8. e2p A To really finish: Need to model the wavefunctions: Could let f = |2px> Could let f = |p> (f = |sp2> is the s-bond) ECE 802-604: Use this result, p.27: t = -3.033 Units s = 0.129 Units e2p = 0.0 Units Example: what are the Units? VM Ayres, ECE802-604, F13

  9. e2p A To really finish: Need to model the wavefunctions: Could let f = |2px> Could let f = |p> (f = |sp2> is the s-bond) Answer: ECE 802-604: Use this result, p.27: t = -3.033 eV s = 0.129 pure number e2p = 0.0 eV VM Ayres, ECE802-604, F13

  10. Graphene E-k: VM Ayres, ECE802-604, F13

  11. Bottom of the conduction band: the 6 equivalent K-points E ky kx VM Ayres, ECE802-604, F13

  12. What you can do with an E-k diagram: Example: What is “k” in 2D? In 1D? VM Ayres, ECE802-604, F13

  13. What you can do with an E-k diagram: Answer: VM Ayres, ECE802-604, F13

  14. Lecture 23 & 24, 19 Nov 13 Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp2: electronic structure E-k relationship/graph for polyacetylene E-k relationship/graph for graphene E-k relationship/graph for CNTs R. Saito, G. Dresselhaus and M.S. Dresselhaus Physical Properties of Carbon Nanotubes VM Ayres, ECE802-604, F13

  15. Graphene: the 6 equivalent K-points Bottom of the conduction band the 6 equivalent K-points metallic E ky kx Therefore: CNTs are metallic at the conditions for the K-points of graphene VM Ayres, ECE802-604, F13

  16. Rules for finding the electronic structure (p. 21): 1 Use to find k 2 Find k 3 Find HAA, HAB, SAA, SAB Find det|H – ES| = 0 => E = E(k) 4 Plot E versus k VM Ayres, ECE802-604, F13

  17. sp2 electronic structure: CNTs • Real space (Unit cell) • Reciprocal space • Use Real and Reciprocal space to find E VM Ayres, ECE802-604, F13

  18. CNT Unit cell in green: Ch = n a1 + m a2 |Ch| = a√n2 + m2 + mn dt = |Ch|/p cos q = a1 • Ch |a1| |Ch| T = t1a1 + t2a2 t1 = (2m + n)/ dR t2 = - (2n + m) /dR dR = the greatest common divisor of 2m + n and 2n+ m N = | T X Ch | | a1xa2 | = 2(m2 + n2+nm)/dR VM Ayres, ECE802-604, F13

  19. Example: Evaluate K1 for a (4,2) CNT: VM Ayres, ECE802-604, F13

  20. In class: VM Ayres, ECE802-604, F13

  21. In class: VM Ayres, ECE802-604, F13

  22. VM Ayres, ECE802-604, F13

  23. VM Ayres, ECE802-604, F13

  24. Example: Evaluate K2 for a (4,2) CNT: VM Ayres, ECE802-604, F13

  25. VM Ayres, ECE802-604, F13

  26. VM Ayres, ECE802-604, F13

  27. VM Ayres, ECE802-604, F13

  28. Example: add a set of axes VM Ayres, ECE802-604, F13

  29. Answer: ky VM Ayres, ECE802-604, F13 kx

  30. VM Ayres, ECE802-604, F13

  31. 0 through 27  28 of these: VM Ayres, ECE802-604, F13

  32. ECNT is quantized VM Ayres, ECE802-604, F13

  33. VM Ayres, ECE802-604, F13

  34. Example: For a (4,2) CNTevaluate: Ch,|Ch|, T, |T|, K1, K2, |K1|, |K2| VM Ayres, ECE802-604, F13

  35. VM Ayres, ECE802-604, F13

  36. VM Ayres, ECE802-604, F13

  37. VM Ayres, ECE802-604, F13

  38. VM Ayres, ECE802-604, F13

  39. VM Ayres, ECE802-604, F13

  40. Example: Compare |b1|, |b2|, with |K1|, |K2| for a (4, 2) CNT VM Ayres, ECE802-604, F13

  41. VM Ayres, ECE802-604, F13

  42. VM Ayres, ECE802-604, F13

  43. CNT E-k; Energy dispersion relations (E vs k curves): Quantization of Energy E is here K1 is quantized by m in Ch direction K2 = k is continuous in T direction VM Ayres, ECE802-604, F13

More Related