1 / 16

A Test for the Disruption of Magnetic Braking in Cataclysmic Variable Evolution

A Test for the Disruption of Magnetic Braking in Cataclysmic Variable Evolution. P. Davis 1 , U. Kolb 1 , B. Willems 2 , B. T. G änsicke 3. 1 Department of Physics & Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

jenifer
Télécharger la présentation

A Test for the Disruption of Magnetic Braking in Cataclysmic Variable Evolution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Test for the Disruption of Magnetic Braking in Cataclysmic Variable Evolution P. Davis1, U. Kolb1, B. Willems2, B. T. Gänsicke3 1Department of Physics & Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 2Department of Physics & Astronomy, Northwestern University, 2131 Tech Drive, Evanston, Illinois, USA 3Department of Physics, University of Warwick, Coventry, UK MNRAS, 2008, 389, 1563-1576

  2. Talk Overview ■ The period gap ■ The disrupted magnetic braking hypothesis ■ Our method ■ Summary of results ■ Future work: the SDSS ■ Conclusions

  3. The Period Gap & The Disrupted Magnetic Braking Hypothesis The Period Gap & The Disrupted Magnetic Braking Hypothesis

  4. Ritter & Kolb (2003), Edition 7.9 (2008)

  5. Magnetic braking drives rapid mass transfer  donor star swells Evolution driven by gravitational radiation. Donor fully convective → magnetic braking ceases System becomes “dCV” Mass transfer resumes ~ 2 h Rappaport, Verbunt & Joss (1983) Spruit & Ritter (1983)

  6. Method Method

  7. ■ Calculate present day populations of: ● “detached CVs” (dCVs) ● “gap post-common envelope binaries” (gPCEBs)  0.17 <M2 / Msun < 0.36 ■ BiSEPS (Binary System Evolution and Population Synthesis) ● Stellar evolution package: Hurley, Pols & Tout 2000 ● Binary Evolution based on Hurley, Tout & Pols 2002 ● Open University developed code (Willems & Kolb 2002, 2004) ● Significant modifications: □ Realistic treatment of mass transfer in CVs □ Reaction of donor star due to mass loss □ Evolution of dCV across period gap

  8. Common Envelope ejection efficiency, αCE Initial Mass Ratio Distribution ? αCE = constant = 0.1 – 5.0 (e.g. Willems & Kolb 2004) αCE = (M2/Msun)p, p = 0.5, 1, 2 (Politano & Weiler 2007) + Primary mass Disrupting Magnetic Braking Magnetic Braking Strength Calibrate strength  ~10-9 Msun yr-1 at 3 hr ■ Gap width of ~ 1 hour ■ R2 ~ 1.3RMS at 3 hr ■ Disrupt magnetic braking once M2 = 0.17Msun ■  lower edge at ~ 2 hr (e.g. McDermot & Taam 1989) Angular momentum loss rate R3Ω3 (Menv/M) R2Ω3M R4Ω3M Hurley, Pols & Tout (2002) Rappaport, Verbunt & Joss (1983)

  9. Results

  10. Excess of dCVs over PCEBs in the period gap → “Mirror Gap” ■ Flat initial mass ratio distribution gPCEB dCV (Goldberg, Lazeh & Latham 2003 Total ■ αCE = 1

  11. ■ Flat initial mass ratio distribution “Mirror Gap” (Goldberg, Lazeh & Latham 2003) ■ Significant Mirror Gap. Ratio dCV/gPCEB in gap: ● ~ 13 for αCE = 0.1 ● ~ 4 for αCE = 0.6 αCE = 0.6 Iben & Livio 1993 αCE = 0.1

  12. ■ The ratio dCV:gPCEB  indicator of size of mirror gap

  13. How about… ■ Different Magnetic braking strengths? dCV:gPCEB=3.5 dCV:gPCEB=5.5 dCV:gPCEB=6.0  Still obtain a mirror gap with a significant peak height, irrespective of MB law ■ Narrower period gap? From a weaker magnetic braking law? (Ivanova & Taam 2003) Gap width of ½ hr dCV:gPCEB ~ 2.1  mirror gap still expected. ■ CVs from thermal timescale mass transfer Contribute an extra ~40% to calculated dCV population (Kolb & Willems 2005)

  14. SDSS ■ ~ 50 PCEBs identified with determined orbital periods. ~10 from SDSS (Rebassa-Mansergas et al 2008, Schreiber et al. 2008) ■ 3 dCV candidates so far identified. □ At 164.2, 129.5 and 130 minutes ■ Require few hundred white dwarf-main sequence binaries to adequately resolve mirror gap.

  15. Conclusions ■ Dearth of CVs with Porb ≈ 2 and 3 hours. ■ Standard explanation  disrupted magnetic explanation… ■ Test: Orbital period distribution of gPCEB and dCV population  “Mirror Gap”  excess of dCV over gPCEBs there. ■ Expect dCV:gPCEB ~ 4 to 13  mirror gap with a significant peak height ■ Observationally feasible  SDSS

  16. References ■ Goldberg D., Mazeh T., Latham D. W., 2003, ApJ, 591, 397 ■ Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543 ■ Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897 ■ Iben I. J., Livio M., 1993, PASP, 105, 1357 ■ Ivanova N., Taam R. E., 2003, ApJ, 599, 516 ■ Jones B. F., Fischer D. A., Stauffer J. R., 1996, AJ, 112, 1562 ■ Knigge C., 2006, MNRAS, 373, 484 ■ Kolb U., Willems B., 2005, ASP Conf. Ser., 330, 17 ■ Politano M., Weiler K. P., 2007, ApJ, 665, 663 ■ Rappaport S., Verbunt F., Joss P. C., 1983, ApJ, 275, 713 ■ Rebassa-Mansergas A., et al., 2007, MNRAS, 382, 1377 ■ Rebassa-Mansergas A., et al., 2008, MNRAS, 390, 1635 ■ Ritter H., Kolb U., 2003, A&A, 404, 301 ■ Schreiber M. R., et al., 2008, A&A, 484, 441 ■ Spruit H. C., Ritter H., 1983, A&A, 124, 267 ■ Willems B., Kolb U., 2002, MNRAS, 337, 1004 ■ Willems B., Kolb U., 2004, A&A, 419, 1057

More Related