1 / 22

Building an Invisible Puzzle: Predicting Protein Structure and Function from Sequence

Building an Invisible Puzzle: Predicting Protein Structure and Function from Sequence . Matthew Perella January 31, 2013. Proteins. Abundance 20 Amino Acids Role in nearly all cellular processes Enzymes, hormones, signaling, immune system, muscle fibers, transporters 1.

jenis
Télécharger la présentation

Building an Invisible Puzzle: Predicting Protein Structure and Function from Sequence

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Building an Invisible Puzzle:Predicting Protein Structure and Function from Sequence Matthew Perella January 31, 2013

  2. Proteins • Abundance • 20 Amino Acids • Role in nearly all cellular processes • Enzymes, hormones, signaling, immune system, muscle fibers, transporters1 Levels of Protein Structure2 Nelson, D. L.; Cox, M. M., Priciples of Biochemistry. 5 ed.; W.H. Freeman and Company: New York, 2008. Image obtained from: primary protein structure | protein-pdb.com. http://proteinpdb.com/2011/10/04/primary-protein-structure/.

  3. Understanding Structure and Function • Proteomics • Characterize structures • Whole-genome sequencing (<1%) • Experimentally • X-Ray Crystallography • NMR Spectroscopy • Computational Prediction • Bioinformatics

  4. Research VinylphenolReductase Sequence MPLMTISDSVKDSLTKSEVVPTVIHDKSFLPKGFLTIQYDSGKEVALGNNIRPADSKNLPRIDFTLNLPSDASSTFNISKDDRFTLIVTDPDAPTRNDEKWSEYLHYLAVDVQLNTFNAENASSNDQLSTADLKGRTLYPYIGPGPPPKTGKHRYVFLLYKQTPGVTPEAPKDRPNWGTGIRGAGAAEYAEKYKLTPYAVNFFYAQNDQQ3 • Wine Spoilage • Brettanomycesbruxellensis • Vinylphenol Reductase3 • Vinylphenols • Ethylphenols • How?? 3. Tchobanov, I.; Gal, L.; Guilloux-Benatier, M. l.; Remiz, F.; Nardi, T.; Guzzo, J.; Serpaggi, V.; Alexandre, H., Partial vinylphenolreductase purification and characterization from Brettanomycesbruxellensis - Powered by Google Docs. European Federation of Microbiological Studies 2008.

  5. Sequence Databases • Protein Data Bank (PDB) • As of Wednesday, January 30th. There are 81,306 characterized structures in the PDB database4 • UniProtKB/Swiss-Prot • 538,849 reviewed sequences 29,266,939 unreviewed sequences5 • Only 77,110 have experimentally solved structures 4. RCSB PDB - Holdings Report. http://www.rcsb.org/pdb/statistics/holdings.do. 5. UniProtKB/Swiss-Prot Available at: http://ca.expasy.org/sprot/relnotes/relstat.html

  6. Classification Schemes • Gene Ontology (GO) • Secondary Structure • Structural Motifs • Family • CATH & SCOP • PROSITE • InterPro • Pfam Sandhya, S. R.; Jayaram, B., Proteins: Sequence to Structure and Function – Current Status. Current protein and peptide science 2010, (11), 498 – 514.

  7. Resources • Similar Sequence Searching • Multiple Sequence Alignments • Prediction • Secondary Structure • 3-D Model • Viewing and Editing Software Watson, J. D.; Laskowski, R. A.; Thornton, J. M., Predicting protein function from sequence and structural data. Current Opinion in Structural Biology 2005,15 (3), 275-284.

  8. Table 1: Bioinformatics Resource Function Analysis

  9. Methods of Prediction • Pattern Recognition • pattern recognition techniques are used to find sequences with high similarity in order to infer related structures and functions. • Ab Initio • prediction method used to create 3-D model to determine structural and functional information using only the sequence Lee, D.; Redfern, O.; Orengo, C., Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol2007,8 (12), 995-1005.

  10. Sequence Similarity Searches Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucleic Acids Res. 25:3389-3402. PubMed BLAST PSI-BLAST

  11. Multiple Alignment • MUSCLE • CLUSTALW • COBALT RC, E., MUSCLE multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2012,32 (5), 1792-1797. Papadopoulos JS and Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences, Bioinformatics 23:1073-79. PubMed.

  12. Template Secondary Structure Annotation

  13. Secondary Structure Prediction

  14. Secondary Structure Annotation

  15. 3-D Model Prediction with Template • PHYRE-2 • PSI-BLAST • Psi-pred and Diso-pred • Hidden Markov Model (HMM) • HMM alignment • 3-D models from known structures • Maximizing Thermodynamic Stability • Modelling insertions and deletions with loop library • Modelling of AA side chains using a rotamer library to minimize steric interferences Kelley, L. A. S. M., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols 2009,4, 364-371.

  16. Phyre2 Model Alignment Results Kelley, L. A. S. M., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols 2009,4, 364-371.

  17. 3-D Model Prediction

  18. Superimposed Structural alignment • Alignment of α-helices and β-sheets • Motif conservation • Infer similar function from homologues Kelley, L. A. S. M., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols 2009,4, 364-371.

  19. Prediction Analysis • QMEAN and SWISS-MODEL used to assess

  20. Models Superimposed on Template

  21. Resources • 1. BLAST References. http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=References. • 2. COBALT:Multiple Alignment Tool. http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?CMD=Doc. • 3. primary protein structure | protein-pdb.com. http://protein-pdb.com/2011/10/04/primary-protein-structure/. • 4. RCSB PDB - Holdings Report. http://www.rcsb.org/pdb/statistics/holdings.do. • 5. Kelley, L. A. S. M., Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols 2009,4, 364-371. • 6. Lambert, C. L. N., De Bolle X, Depiereux E., ESyPred3D submitting form. 2012. • 7. Lee, D.; Redfern, O.; Orengo, C., Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol2007,8 (12), 995-1005. • 8. Linding, R. e. a., Protein disorder prediction: Implications for structural proteomics. EMBL - Biocomputing unit: 2012. • 9. Nelson, D. L.; Cox, M. M., Priciples of Biochemistry. 5 ed.; W.H. Freeman and Company: New York, 2008. • 10. RC, E., MUSCLE multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2012,32 (5), 1792-1797. • 11. Sandhya, S. R.; Jayaram, B., Proteins: Sequence to Structure and Function – Current Status. Current protein and peptide science 2010, (11), 498 – 514. • 12. Shenoy, S. R.; Jayaram, B., Proteins: sequence to structure and function--current status. Curr Protein PeptSci2010,11 (7), 498-514. • 13. Tchobanov, I.; Gal, L.; Guilloux-Benatier, M. l.; Remiz, F.; Nardi, T.; Guzzo, J.; Serpaggi, V.; Alexandre, H., Partial vinylphenolreductase purification and characterization from Brettanomycesbruxellensis - Powered by Google Docs. European Federation of Microbiological Studies 2008. • 14. Watson, J. D.; Laskowski, R. A.; Thornton, J. M., Predicting protein function from sequence and structural data. Current Opinion in Structural Biology 2005,15 (3), 275-284.

More Related