1 / 14

A ll Silicon Lithium-ion Battery

A ll Silicon Lithium-ion Battery. Chao Xu Department of Chemistry -Ångström Uppsala University. Project info. Projektets namn: Nästa generation litium-jon batterier; kisel och silikat Start- och sluttid för projektet: 2011-06-01 – 2014-12-31

Télécharger la présentation

A ll Silicon Lithium-ion Battery

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. All Silicon Lithium-ion Battery Chao Xu Department of Chemistry-Ångström Uppsala University

  2. Project info. • Projektets namn: Nästa generation litium-jon batterier; kisel och silikat • Start- och sluttid för projektet: 2011-06-01 – 2014-12-31 • Huvudstödmottagare samt andra parter i projektet: Torbjörn Gustafsson, UU • Inom vilket program projektet fått stöd: Energieffektiva vägfordon, period 2011-2014 • Stödsumma: 4920000 kr

  3. Background 1. Tarascon, J. M. and M. Armand (2001). "Issues and challenges facing rechargeable lithium batteries." Nature 414(6861): 359-367.

  4. Criteria for different systems • Portable devices • Electric vehicle • Grid energy storage Energy density Safety Lifetime • Novel materials • Material modification • New electrolyte, additives • Battery system engineering Safety, lifetime Power density &Energy density Cost Lifetime Cost Up-scale capability

  5. All Silicon Battery • Battery configuration

  6. Why ”all silicon”? • Silicate materials: stable crystal-structure • Earth abundant elements - Si, (Fe) - Low cost - Capable of large-scale production • High specific capacity Li2FeSiO4 166 mAh/g (LiCoO2 140 mAh/g) Silicon 3600 mAh/g (Graphite372 mAh/g) • Environmentally friendly, compare to toxic LiCoO2

  7. Problems to be solved • Cathode side (Li2FeSiO4): • Poor electronic conductivity • Low temperature performance • Extracting second Li from Li2FeSiO4 • Anode side (Si): • Volume change during cycling (4 times larger when fully discharged) • Large irreversible capacity • Low coulombic efficiency • Capacity fading

  8. Silicon anode 10 wt% electrolyte additive (fluoroethylene carbonate, FEC) added in the electrolyte LP40 • Significantly increased capacity rentation and coulombic efficiency 0.12 V – 0.9 V, 500 mA/g

  9. Silicon anode • Solid electrolyte interphase (SEI) study usingX-ray photoelectron spectroscopy (XPS) • After 85 cycles C1s FEC/LP40 LP40

  10. Lithium iron silicate • Combustion synthesis of Li2FeSiO4 (LFS) by Dr. Mohammed Dahbi 2. Dahbi, M., S. Urbonaite, et al. (2012). "Combustion synthesis and electrochemical performance of Li2FeSiO4/C cathode material for lithium-ion batteries." Journal of Power Sources 205(0): 456-462.

  11. All silicon battery • Preliminary results on silicate-silicon battery with different cycling conditions

  12. Conclusion and Outlook • Safe and long lifetime battery systems needed for EV application • Electrolyte additive FEC can significantly increase the performance of silicon anode • Improve the electronic and ionic conductivity of Li2FeSiO4 electrode • Improve the all silicon battery performance

  13. Acknowledgements • Torbjörn Gustafsson • Kristina Edström • Mohammed Dahbi • Fredrik Lindgren • Bertrand Philippe

  14. Comments and questions are appreciated!

More Related