200 likes | 521 Vues
A ll Silicon Lithium-ion Battery. Chao Xu Department of Chemistry -Ångström Uppsala University. Project info. Projektets namn: Nästa generation litium-jon batterier; kisel och silikat Start- och sluttid för projektet: 2011-06-01 – 2014-12-31
E N D
All Silicon Lithium-ion Battery Chao Xu Department of Chemistry-Ångström Uppsala University
Project info. • Projektets namn: Nästa generation litium-jon batterier; kisel och silikat • Start- och sluttid för projektet: 2011-06-01 – 2014-12-31 • Huvudstödmottagare samt andra parter i projektet: Torbjörn Gustafsson, UU • Inom vilket program projektet fått stöd: Energieffektiva vägfordon, period 2011-2014 • Stödsumma: 4920000 kr
Background 1. Tarascon, J. M. and M. Armand (2001). "Issues and challenges facing rechargeable lithium batteries." Nature 414(6861): 359-367.
Criteria for different systems • Portable devices • Electric vehicle • Grid energy storage Energy density Safety Lifetime • Novel materials • Material modification • New electrolyte, additives • Battery system engineering Safety, lifetime Power density &Energy density Cost Lifetime Cost Up-scale capability
All Silicon Battery • Battery configuration
Why ”all silicon”? • Silicate materials: stable crystal-structure • Earth abundant elements - Si, (Fe) - Low cost - Capable of large-scale production • High specific capacity Li2FeSiO4 166 mAh/g (LiCoO2 140 mAh/g) Silicon 3600 mAh/g (Graphite372 mAh/g) • Environmentally friendly, compare to toxic LiCoO2
Problems to be solved • Cathode side (Li2FeSiO4): • Poor electronic conductivity • Low temperature performance • Extracting second Li from Li2FeSiO4 • Anode side (Si): • Volume change during cycling (4 times larger when fully discharged) • Large irreversible capacity • Low coulombic efficiency • Capacity fading
Silicon anode 10 wt% electrolyte additive (fluoroethylene carbonate, FEC) added in the electrolyte LP40 • Significantly increased capacity rentation and coulombic efficiency 0.12 V – 0.9 V, 500 mA/g
Silicon anode • Solid electrolyte interphase (SEI) study usingX-ray photoelectron spectroscopy (XPS) • After 85 cycles C1s FEC/LP40 LP40
Lithium iron silicate • Combustion synthesis of Li2FeSiO4 (LFS) by Dr. Mohammed Dahbi 2. Dahbi, M., S. Urbonaite, et al. (2012). "Combustion synthesis and electrochemical performance of Li2FeSiO4/C cathode material for lithium-ion batteries." Journal of Power Sources 205(0): 456-462.
All silicon battery • Preliminary results on silicate-silicon battery with different cycling conditions
Conclusion and Outlook • Safe and long lifetime battery systems needed for EV application • Electrolyte additive FEC can significantly increase the performance of silicon anode • Improve the electronic and ionic conductivity of Li2FeSiO4 electrode • Improve the all silicon battery performance
Acknowledgements • Torbjörn Gustafsson • Kristina Edström • Mohammed Dahbi • Fredrik Lindgren • Bertrand Philippe