1 / 46

AVL Trees

AVL Trees. CSE 373 Data Structures Winter 2006. Binary Search Tree - Best Time. All BST operations are O(d), where d is tree depth minimum d is for a binary tree with N nodes What is the best case tree? What is the worst case tree?

jsheena
Télécharger la présentation

AVL Trees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AVL Trees CSE 373 Data Structures Winter 2006

  2. Binary Search Tree - Best Time • All BST operations are O(d), where d is tree depth • minimum d is for a binary tree with N nodes • What is the best case tree? • What is the worst case tree? • So, best case running time of BST operations is O(log N) CSE 373 - AU 06 -- AVL Trees

  3. Binary Search Tree - Worst Time • Worst case running time is O(N) • What happens when you Insert elements in ascending order? • Insert: 2, 4, 6, 8, 10, 12 into an empty BST • Problem: Lack of “balance”: • compare depths of left and right subtree • Unbalanced degenerate tree CSE 373 - AU 06 -- AVL Trees

  4. Balanced and unbalanced BST 1 4 2 2 5 3 1 3 4 4 Is this “balanced”? 5 2 6 6 1 3 5 7 7 CSE 373 - AU 06 -- AVL Trees

  5. Approaches to balancing trees • Don't balance • May end up with some nodes very deep • Strict balance • The tree must always be balanced perfectly • Pretty good balance • Only allow a little out of balance • Adjust on access • Self-adjusting CSE 373 - AU 06 -- AVL Trees

  6. Balancing Binary Search Trees • Many algorithms exist for keeping binary search trees balanced • Adelson-Velskii and Landis (AVL) trees (height-balanced trees) • Splay trees and other self-adjusting trees • B-trees and other multiway search trees CSE 373 - AU 06 -- AVL Trees

  7. Perfect Balance • Want a complete tree after every operation • tree is full except possibly in the lower right • This is expensive • For example, insert 2 in the tree on the left and then rebuild as a complete tree 6 5 Insert 2 & complete tree 4 9 2 8 1 5 8 1 4 6 9 CSE 373 - AU 06 -- AVL Trees

  8. AVL - Good but not Perfect Balance • AVL trees are height-balanced binary search trees • Balance factor of a node • height(left subtree) - height(right subtree) • An AVL tree has balance factor calculated at every node • For every node, heights of left and right subtree can differ by no more than 1 • Store current heights in each node CSE 373 - AU 06 -- AVL Trees

  9. Height of an AVL Tree • N(h) = minimum number of nodes in an AVL tree of height h. • Basis • N(0) = 1, N(1) = 2 • Induction • N(h) = N(h-1) + N(h-2) + 1 • Solution(Fibonacci) • N(h) >h (  1.62) h h-2 h-1 CSE 373 - AU 06 -- AVL Trees

  10. Height of an AVL Tree • N(h) >h (  1.62) • Suppose we have n nodes in an AVL tree of height h. • n >N(h) (because N(h) was the minimum) • n >h hence log n > h (relatively well balanced tree!!) • h < 1.44 log2n (i.e., O(height) takes O(log n)) CSE 373 - AU 06 -- AVL Trees

  11. Node Heights Tree A (AVL) Tree B (AVL) height=3 balance factor=2-1=1 3 6 6 2 1 2 2 4 9 4 9 1 1 1 1 1 1 5 1 5 8 CSE 373 - AU 06 -- AVL Trees

  12. Worst-case AVL Trees 4 nodes: h = 3 vs 3 7 nodes: h = 4 vs 3 12 nodes: h = 5 vs 4 20 nodes: h = 6 vs 5 33 nodes: h = 7 vs 6 54 nodes: h = 8 vs 6 88 nodes: h = 9 vs 7 143 nodes: h = 10 vs 8 232 nodes: h = 11 vs 8 376 nodes: h = 12 vs 9 609 nodes: h = 13 vs 10 986 nodes: h = 14 vs 10 1596 nodes: h = 15 vs 11 CSE 373 - AU 06 -- AVL Trees

  13. Node Heights after Insert 7 Tree A (AVL) Tree B (not AVL) balance factor 2-0 = 2 3 4 6 6 2 2 2 3 4 9 4 9 0 1 1 1 1 1 2 7 1 5 1 5 8 1 7 CSE 373 - AU 06 -- AVL Trees

  14. Insert and Rotation in AVL Trees • Insert operation may cause balance factor to become 2 or –2 for some node • only nodes on the path from insertion point to root node have possibly changed in height • So after the Insert, go back up to the root node by node, updating heights • If a new balance factor (the difference hleft-hright) is 2 or –2, adjust tree by rotationaround the node CSE 373 - AU 06 -- AVL Trees

  15. Single Rotation in an AVL Tree 3 3 6 6 2 3 2 2 4 9 4 8 1 1 1 1 2 1 1 7 9 1 5 8 1 5 1 7 CSE 373 - AU 06 -- AVL Trees

  16. Insertions in AVL Trees Let the node that needs rebalancing be . There are 4 cases: Outside Cases (require single rotation) : 1. Insertion into left subtree of left child of . 2. Insertion into right subtree of right child of . Inside Cases (require double rotation) : 3. Insertion into right subtree of left child of . 4. Insertion into left subtree of right child of . The rebalancing is performed through four separate rotation algorithms. CSE 373 - AU 06 -- AVL Trees

  17. AVL Insertion: Outside Case f Consider a valid AVL subtree b h G h h A D CSE 373 - AU 06 -- AVL Trees

  18. AVL Insertion: Outside Case f Inserting into A destroys the AVL property at node f b h G h+1 h D A CSE 373 - AU 06 -- AVL Trees

  19. AVL Insertion: Outside Case f Do a “right rotation” b h G h+1 h D A CSE 373 - AU 06 -- AVL Trees

  20. Single right rotation f Do a “right rotation” b h G h+1 h D A CSE 373 - AU 06 -- AVL Trees

  21. Outside Case Completed “Right rotation” done (“Left rotation” is mirror symmetric) b f h+1 h h A G D AVL property has been restored CSE 373 - AU 06 -- AVL Trees

  22. AVL Insertion: Inside Case f Consider a valid AVL subtree b h G h h A D CSE 373 - AU 06 -- AVL Trees

  23. AVL Insertion: Inside Case f Inserting into D destroys the AVL property at node f Does “right rotation” restore balance? b h G h h+1 A D CSE 373 - AU 06 -- AVL Trees

  24. AVL Insertion: Inside Case b “Right rotation” does not restore balance… now b is out of balance f h A h h+1 G D CSE 373 - AU 06 -- AVL Trees

  25. AVL Insertion: Inside Case f Consider the structure of subtree Y… b h G h h+1 A D CSE 373 - AU 06 -- AVL Trees

  26. AVL Insertion: Inside Case f Y = node i and subtrees V and W b h G d h h+1 A h or h-1 E C CSE 373 - AU 06 -- AVL Trees

  27. AVL Insertion: Inside Case f We will do a left-right “double rotation” . . . b G d A E C CSE 373 - AU 06 -- AVL Trees

  28. Double rotation : first rotation f left rotation complete d G b E C A CSE 373 - AU 06 -- AVL Trees

  29. Double rotation : second rotation f Now do a right rotation d G b E C A CSE 373 - AU 06 -- AVL Trees

  30. Double rotation : second rotation right rotation complete Balance has been restored d f b h h h or h-1 C G E A CSE 373 - AU 06 -- AVL Trees

  31. Example of Insertions in an AVL Tree 3 20 Insert 5, 40 1 2 10 30 1 1 35 25 CSE 373 - AU 06 -- AVL Trees

  32. Example of Insertions in an AVL Tree 3 4 20 20 2 2 2 3 10 30 10 30 1 1 1 2 1 1 5 35 5 35 25 25 1 40 Now Insert 45 CSE 373 - AU 06 -- AVL Trees

  33. Single rotation (outside case) 5 4 20 20 2 4 2 3 10 30 10 30 1 3 1 1 1 2 5 35 5 40 25 25 1 1 35 45 40 2 Imbalance 1 45 Now Insert 34 CSE 373 - AU 06 -- AVL Trees

  34. Double rotation (inside case) 5 4 20 20 4 4 2 3 10 30 10 35 1 3 3 1 2 2 5 Imbalance 40 5 40 25 30 1 25 34 2 1 45 35 45 1 Insertion of 34 1 34 CSE 373 - AU 06 -- AVL Trees

  35. AVL Tree Deletion • Similar but more complex than insertion • Rotations and double rotations needed to rebalance • Imbalance may propagate upward so that many rotations may be needed. CSE 373 - AU 06 -- AVL Trees

  36. Pros and Cons of AVL Trees • Arguments for AVL trees: • Search is O(log N) since AVL trees are always balanced. • Insertion and deletions are also O(logn) • The height balancing adds no more than a constant factor to the speed of insertion. • Arguments against using AVL trees: • Difficult to program & debug; more space for balance factor. • Asymptotically faster but rebalancing costs time. • Most large searches are done in database systems on disk and use other structures (e.g. B-trees). • May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees). CSE 373 - AU 06 -- AVL Trees

  37. Deletion 6 100 5 4 144 44 3 2 3 4 117 162 17 62 1 2 2 1 2 3 2 132 178 32 78 111 150 50 1 1 1 2 1 1 1 172 72 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  38. Deletion 6 100 5 4 144 44 3 1 3 4 117 162 17 62 1 2 2 1 2 3 2 132 178 32 78 111 150 50 1 1 1 2 1 1 1 172 72 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  39. Deletion 6 100 5 144 44 3 4 117 162 17 62 2 2 3 2 132 178 78 111 150 50 1 1 2 1 1 1 172 72 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  40. Deletion 6 100 5 144 62 3 4 117 162 44 78 2 2 3 2 132 178 17 72 111 150 50 1 1 2 1 1 1 172 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  41. Deletion 6 100 3 5 144 62 3 2 4 2 117 162 44 78 2 1 1 1 2 3 2 132 178 17 72 111 150 50 1 1 2 1 1 1 172 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  42. Deletion 6 100 3 5 144 62 3 2 4 2 117 162 44 78 1 1 2 1 2 3 2 132 178 17 72 111 150 50 1 1 2 1 1 1 172 101 128 132 147 181 1 129 CSE 373 - AU 06 -- AVL Trees

  43. Deletion 100 144 62 117 162 44 78 132 178 17 72 111 150 50 172 101 128 132 147 181 129 CSE 373 - AU 06 -- AVL Trees

  44. Deletion 100 117 62 44 144 78 111 132 17 72 101 162 50 128 132 178 150 129 172 147 181 CSE 373 - AU 06 -- AVL Trees

  45. Deletion 117 144 100 132 62 111 162 44 178 78 101 128 132 150 172 17 72 129 147 181 50 CSE 373 - AU 06 -- AVL Trees

  46. Deletion 5 117 4 4 144 100 3 2 3 3 132 62 111 162 2 1 2 2 2 1 2 44 78 101 128 132 178 150 1 1 1 1 1 1 1 17 72 129 50 172 147 181 CSE 373 - AU 06 -- AVL Trees

More Related