1 / 22

THERMOCHEMISTRY

THERMOCHEMISTRY. Definitions #1. Energy : The capacity to do work or produce heat. Potential Energy : Energy due to position or composition. Kinetic Energy : Energy due to the motion of the object. Definitions #2.

judd
Télécharger la présentation

THERMOCHEMISTRY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. THERMOCHEMISTRY

  2. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy: Energy due to the motion of the object

  3. Definitions #2 Law of Conservation of Energy: Energy can neither be created nor destroyed, but can be converted between forms The First Law of Thermodynamics: The total energy content of the universe is constant

  4. State Functions depend ONLY on the present state of the system ENERGYIS A STATE FUNCTION A person standing at the top of Mt. Everest has the same potential energy whether they got there by hiking up, or by falling down from a plane! WORKIS NOT A STATE FUNCTION WHY NOT???

  5. E = q + w E = change in internal energy of a system q = heat flowing into or out of the system -q if energy is leaving to the surroundings +q if energy is entering from the surroundings w = work done by, or on, the system -w if work is done by the system on the surroundings +w if work is done on the system by the surroundings

  6. Work, Pressure, and Volume Compression Expansion +V (increase) -V (decrease) -w results +w results Esystemdecreases Esystemincreases Work has been done on the system by the surroundings Work has been done by the system on the surroundings

  7. Energy Change in Chemical Processes Endothermic: Reactions in which energy flows into the system as the reaction proceeds. + qsystem - qsurroundings Exothermic: Reactions in which energy flows out of the system as the reaction proceeds. - qsystem + qsurroundings

  8. Endothermic Reactions

  9. Exothermic Reactions

  10. Calorimetry The amount of heat absorbed or released during a physical or chemical change can be measured… …usually by the change in temperature of a known quantity of water 1 calorie is the heat required to raise the temperature of 1 gram of water by 1 C 1 BTU is the heat required to raise the temperature of 1 pound of water by 1 F

  11. The Joule The unit of heat used in modern thermochemistry is the Joule 1 joule = 4.184 calories

  12. A Bomb Calorimeter

  13. A Cheaper Calorimeter

  14. Specific Heat The amount of heat required to raise the temperature of one gram of substance by one degree Celsius.

  15. Calculations Involving Specific Heat OR s = Specific Heat Capacity q = Heat lost or gained T = Temperature change

  16. Hess’s Law “In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a series of steps.”

  17. Hess’s Law

  18. Hess’s Law Example Problem CH4 C + 2H2 +74.80 kJ Step #1: CH4 must appear on the reactant side, so we reverse reaction #1 and change the sign on H.

  19. Hess’s Law Example Problem CH4 C + 2H2 +74.80 kJ C + O2 CO2 -393.50 kJ Step #2: Keep reaction #2 unchanged, because CO2 belongs on the product side

  20. CH4 C + 2H2 +74.80 kJ C + O2 CO2 -393.50 kJ 2H2 + O2 2 H2O -571.66 kJ Step #3: Multiply reaction #2 by 2

  21. Hess’s Law Example Problem CH4 C + 2H2 +74.80 kJ C + O2 CO2 -393.50 kJ 2H2 + O2 2 H2O -571.66 kJ CH4 + 2O2 CO2 + 2H2O -890.36 kJ Step #4: Sum up reaction and H

  22. Calculation of Heat of Reaction from heat of formation Hrxn = Hf(products) - Hf(reactants) Hrxn = [-393.50kJ + 2(-285.83kJ)] – [-74.80kJ] Hrxn = -890.36 kJ

More Related