1 / 4

湖泊体积及平均水深的估算

湖泊体积及平均水深的估算. 椭球正弦曲面( elliptic sinosoids) 是许多湖泊的湖床形状的很好的近似 . 假定湖面的边界为椭圆. 若湖的最大水深为. , 则椭球正弦曲面由. 其中 给出. 现要求湖水的总体积 V 及平均水深. 湖泊体积及平均水深的估算. 解 : 若 是湖面的椭圆区域 ,. 则湖水的总体积为. 被积函数的形状启示我们用变换. 湖泊体积及平均水深的估算. 由二重积分的变量替换公式得. 湖泊体积及平均水深的估算.

jude
Télécharger la présentation

湖泊体积及平均水深的估算

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 湖泊体积及平均水深的估算 椭球正弦曲面(elliptic sinosoids)是许多湖泊的湖床形状的很好的近似. 假定湖面的边界为椭圆 若湖的最大水深为 , 则椭球正弦曲面由 其中 给出 . 现要求湖水的总体积 V及平均水深 .

  2. 湖泊体积及平均水深的估算 解:若 是湖面的椭圆区域, 则湖水的总体积为 被积函数的形状启示我们用变换

  3. 湖泊体积及平均水深的估算 由二重积分的变量替换公式得

  4. 湖泊体积及平均水深的估算 上述公式可通过测量 来估计湖水的体积(即水量). 容易证明椭圆R的面积为 ,因而湖水的平均深度为 人们对全世界107个湖泊的研究得到 的平均值为0.467.

More Related