1 / 17

Plataforma de desenvolvimento

Plataforma de desenvolvimento. Foi escolhida a Plataforma de simulação MatLab/Simulink <---> FlighGear (X-Plane se encontra em processo de teste). Flight Gear Simulator. UDP 5500. Unidade Barometrica. Recomendação do filtro pasabaixa análógico 650Hz.

Télécharger la présentation

Plataforma de desenvolvimento

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plataforma de desenvolvimento • Foi escolhida a Plataforma de simulação MatLab/Simulink <---> FlighGear (X-Plane se encontra em processo de teste) Flight Gear Simulator UDP 5500 Barometric Altimeter and Inertial Navigation System & GPS

  2. UnidadeBarometrica • Recomendação do filtropasabaixaanálógico 650Hz. • Recomendação de filtro Butterworth 2do ordenfc= 10Hz? • Programação do filtro digital interno do TI ADS1255. • O filtro digital interno TI trabalhaaté 32KSPS • A resposta do MPXA4115 = 1ms. • Filtro Inertial Navigation System & GPS

  3. UnidadeBarometrica • No modelo foi considerada a função de transferencia do datasheet. Inertial Navigation System & GPS

  4. AltimetroBarometrico • Testeda US Standard Atmosphere 1976 • Logo de verificaroslimitesdafunção no Wolfram Mathematicaparaacharoscoeficientesdaequação: • Unidades SI; • TROPOSPHERE 0 11 Km; • dTH=-0.0065; • R=287.052; • g= 9.80665; • T0=288.15; • P0=101325; • a=T0/-dTH • b=-dTH*R/g • 44330.8 • 0.190263 • h[p_]=a (1- (p/P0)b) • 44330.76923076923` (1-0.11158343153792875` p0.19026252593903117`) • 44330.8 (1-0.111583 p0.190263) • h[0] • h[101325] • 44330.8 • 0. Inertial Navigation System & GPS

  5. RoC Rate of Climb • As dificuldades na derivação da altitude para achar a RoC fazerm necessário a escolha de um filtro. • Foi escolhido o filtro Wahsout Roc[s]=s/((1+T1s)(1+T2s)) fa <1/T1 e 1/T2 < N (largura de banda do ruido do sensor) Inertial Navigation System & GPS

  6. IAS (Indicated Airspeed) Inertial Navigation System & GPS

  7. GPS/INS complementary characteristics Inertial Navigation System & GPS

  8. Descentralized GPS/INS integration 2000 Inertial navigation systems with geodetic applications Por Christopher Jekeli Inertial Navigation System & GPS

  9. Difference between INS and GPS Descentralized processing Inertial Navigation System & GPS

  10. Centralized GPS/INS integration 2000 Inertial navigation systems with geodetic applications Por Christopher Jekeli Inertial Navigation System & GPS

  11. Cycle Ambiguaty Detection INS/GPS Centralized Integartion Inertial Navigation System & GPS

  12. Dificuldades • Definir os passos de propagação e atualização.(asíncrono ou síncrono) Exemplo 85Hz propagação e 20Hz atualização. • O algoritmo de inversão de matrizes (erros por determinantes muito pequenos, precisão) Exemplo: Gauss Jordan • Desempenho esperado: Attitude , Latitude, Longitude e Altura. Inertial Navigation System & GPS

  13. Dificuldades • Erros de integração fixed-step, fazemdivergerrapidamente o INS semKF. • Definiçãodaarquitetura do filtro (centralizado, desacoplado). • Definição do vetor de estados. • Definição do tipo de filtro: KF Linear, EKF, UKF, CKF. • No caso de usar um EKF, avaliar o metodoBierman-Thornton. Inertial Navigation System & GPS

  14. Dificuldades 2008 Jay A. Farrell AIDEDNAVIGATION GPS with High Rate Sensors • Specification of the initial error covariance matrix P is often a cause of difficulties. Being careless in the definition of P, especially the portions of P related to the attitude errors, can have serious detrimental effects on the performance of the system. It is often best to use the sensor readings during a short period at the start of operation to initialize the state vector. Based on the statistics of the sensor measurements and the initialization period duration, the error covariance matrix P can be specified reasonably. Inertial Navigation System & GPS

  15. Cascata Tress-Stage INS/GPS 2006 Eldredge Thesis IMPROVED STATE ESTIMATION FOR MINIATURE AIR VEHICLES Inertial Navigation System & GPS

  16. Tree-Stage2004 DESIGN AND DEVELOPMENT OF DSP BASED GPS-INS INTEGRATED SYSTEMBhaktavatsala S Inertial Navigation System & GPS

  17. Integration of INS and GPS System Using Kalman Filtering2004 Vikas Kumar Inertial Navigation System & GPS

More Related