1 / 75

TEMPERATURA

TEMPERATURA. O que é temperatura? Quando tocamos um corpo qualquer, podemos dizer se ele está "frio", "quente" ou "morno". O tato nos permite ter essa percepção. Mas em que um corpo "frio" difere de um corpo "quente" ou "morno"?.

kaida
Télécharger la présentation

TEMPERATURA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TEMPERATURA O que é temperatura? Quando tocamos um corpo qualquer, podemos dizer se ele está "frio", "quente" ou "morno". O tato nos permite ter essa percepção. Mas em que um corpo "frio" difere de um corpo "quente" ou "morno"?

  2. As moléculas dos corpos estão em constante movimento, em constante vibração. A energia de movimento que elas possuem é chamada energia térmica. Se pudéssemos enxergar as moléculas de um corpo, iríamos verificar que naquele que está "frio" elas vibram menos do que naquele que está "quente". Podemos afirmar que:

  3. Temperatura: é a grandeza física que mede o estado de agitação térmica dos corpos.

  4. Termômetros As substâncias em geral dilatam-se (aumentam de volume) quando sofrem aumento de temperatura. Assim, uma barra de ferro, por exemplo, aumenta de comprimento quando colocada no fogo.

  5. Do mesmo modo, o volume de gás contido num balão elástico aumenta quando cresce a temperatura. A coluna de mercúrio contida num tubo sofre o mesmo efeito e aumenta de altura.

  6. A propriedade que os corpos apresentam de mudar de volume, quando se modifica a temperatura, pode ser usada para medir temperaturas. Os termômetros de mercúrio, muito comuns em laboratórios, clínicas médicas e mesmo em casa, funcionam baseados na dilatação do mercúrio. Digamos, por exemplo, que precisamos medir a temperatura da água de um copo.

  7. Colocamos o termômetro dentro dele e aguardamos alguns minutos para que a água e o termômetro entrem em equilíbrio térmico. A variação de temperatura, para mais ou para menos, sofrida pelo mercúrio vai fazer com que seu volume varie, para mais ou para menos. Com isso, ele sobe ou desce na escala de temperaturas, indicando o valor correto da temperatura. 

  8. ESCALA CELSIUS Escala celsius No século XVII, o físico e astrônomo sueco Anders Celsius sugeriu que a temperatura de fusão do gelo, ao nível do mar, recebesse o valor arbitrário de 0 grau (hoje 0o C), e que a temperatura de ebulição da água, também ao nível do mar, fosse fixada em 100 graus (100o C, valor igualmente arbitrário).

  9. Escolhidos os pontos de fusão e ebulição da água, pode-se agora construir um termômetro calibrado na escala Celsius. Para isso é necessário um tubo fino (tubo capilar) de vidro, com um reservatório para o mercúrio. Coloca-se o conjunto num recipiente com gelo em fusão (que, portanto, está à temperatura de 0o C), e, após alguns minutos, quando o mercúrio parar de descer, por entrar em equilíbrio térmico com a mistura água-gelo, faz-se uma marca para 0o C.

  10. Em seguida, coloca-se o tubo em água fervente (que na escala Celsius está a 100 graus) e faz-se uma marca para 100o C. A seguir divide-se o espaço entre as duas marcas em 100 partes e fecha-se o tubo. O termômetro está pronto para ser usado.

  11. Escala Fahrenheit Na escala Fahrenheit, ainda em uso nos países de língua inglesa, ao 0 e ao 100 da escala Celsius correspondem respectivamente os números 32 e 212. Assim, entre a temperatura de fusão do gelo e da ebulição da água, estão compreendidos 180º F.

  12. Escala Kelvin Sabe-se que não há, teoricamente, um limite superior para a temperatura que um corpo pode alcançar. Observa-se, entretanto, que existe um limite inferior. Os cientistas verificaram que é impossível reduzir a temperatura de qualquer substância a um valor inferior a -273º C (o zero absoluto).

  13. O físico inglês lorde Kelvin propôs uma escala termométrica, que leva o seu nome. Tal escala tem origem no zero absoluto, usando como unidade de variação o grau Celsius. Na escala Kelvin, a temperatura de fusão do gelo corresponde a 273 K e a de ebulição da água, a 373 K.

  14. Relação entre as Escalas Termométricas Relação entre as escalas Celsius e FahrenheitDado um valor de temperatura em uma escala, podemos obter seu valor correspondente em outra escala. Para obtermos a relação entre as leituras nas duas escalas devemos estabelecer a proporção entre os segmentos determinados na haste de cada termômetro

  15. Dado um valor de temperatura em uma escala, podemos obter seu valor correspondente em outra escala. Para obtermos a relação entre as leituras nas duas escalas devemos estabelecer a proporção entre os segmentos determinados na haste de cada termômetro. tc /5 = tf - 32 /9 tC = temperatura Celcius tF = temperatura Fahrenheit

  16. Relação entre as escalas Celsius e Kelvin tC = tK – 273 tC = temperatura Celcius tK = temperatura Kelvin

  17. Algumas temperaturas:

  18. Exemplos: • Num determinado dia, em São Paulo, a temperatura ambiente foi igual à de Londres. Sabendo que, nesse dia, a temperatura de Londres foi 50ºF, a temperatura de São Paulo foi: a) 10ºC. tc /5 = tf - 32 /9 b) 20ºC. Tc/5 = (50 – 32)/9 c) 25ºC. Tc/5 = 18/9 d) 28ºC. Tc= 2x5 e) 32ºC. Tc = 10ºC

  19. 2) À pressão de 1 atm, as temperaturas de ebulição da água e fusão do gelo na escala Fahrenheit são, respectivamente, 212ºF e 32ºF. A temperatura de um líquido que está a 50ºC à pressão de 1 atm é, em ºF: a) 162. tc/5 = (tf-32) / 9 b) 90. 50/5 = (tf – 32) / 9 c) 106. 10 x 9 = (tf – 32) d) 82. 90 + 32 = tf e) 122. tf = 122ºF

  20. 3) Para medir a temperatura de um certo corpo, utilizou-se um termômetro graduado na escala Fahrenheit e o valor obtido correspondeu a 4/5 da indicação de um termômetro graduado na escala Celsius, para o mesmo estado térmico. Se a escala adotada tivesse sido a Kelvin, esta temperatura seria indicada por: • 305 K. b) 273 K. c) 241 K. d) 32 K. e) 25,6 K.

  21. Solução Tc/5 = (tf – 32 ) / 9 Tc/5 = (4tc/5 – 32)/9 9tc = 4tc - 160 5tc = 160 Tc = 32ºC K = 305K

  22. CALORIMETRIA Quando colocamos dois corpos com temperaturas diferentes em contato, podemos observar que a temperatura do corpo "mais quente" diminui, e a do corpo "mais frio" aumenta, até o momento em que ambos os corpos apresentem temperatura igual. Esta reação é causada pela passagem de energia térmica do corpo "mais quente" para o corpo "mais frio", a transferência de energia é o que chamamos calor.

  23. Calor: é a transferência de energia térmica entre corpos com temperaturas diferentes. A unidade mais utilizada para o calor é caloria (cal), embora sua unidade no SI seja o joule (J). Uma caloria equivale a quantidade de calor necessária para aumentar a temperatura de um grama de água pura, sob pressão normal, de 14,5°C para 15,5°C.

  24. A relação entre a caloria e o joule é dada por: 1 cal = 4,186J Partindo daí, podem-se fazer conversões entre as unidades usando regra de três simples. Como 1 caloria é uma unidade pequena, utilizamos muito o seu múltiplo, a quilocaloria. 1 kcal = 10³cal

  25. Calor sensível É denominado calor sensível, a quantidade de calor que tem como efeito apenas a alteração da temperatura de um corpo.

  26. Este fenômeno é regido pela lei física conhecida como Equação Fundamental da Calorimetria, que diz que a quantidade de calor sensível (Q) é igual ao produto de sua massa, da variação da temperatura e de uma constante de proporcionalidade dependente da natureza de cada corpo denominada calor específico.

  27. Assim: Onde: Q = quantidade de calor sensível (cal ou J). c = calor específico da substância que constitui o corpo (cal/g°C ou J/kg°C). m = massa do corpo (g ou kg). Δθ = variação de temperatura (°C).

  28. É interessante conhecer alguns valores de calores específicos:

  29. Exemplo: 1) Qual a quantidade de calor sensível necessária para aquecer uma barra de ferro de 2kg de 20°C para 200°C? Dado: calor específico do ferro = 0,119cal/g°C.

  30. Solução:

  31. Calor latente Nem toda a troca de calor existente na natureza se detém a modificar a temperatura dos corpos. Em alguns casos há mudança de estado físico destes corpos. Neste caso, chamamos a quantidade de calor calculada de calor latente.

  32. A quantidade de calor latente (Q) é igual ao produto da massa do corpo (m) e de uma constante de proporcionalidade (L). Assim:

  33. A constante de proporcionalidade é chamada calor latente de mudança de fase e se refere a quantidade de calor que 1g da substância calculada necessita para mudar de uma fase para outra. Além de depender da natureza da substância, este valor numérico depende de cada mudança de estado físico.

  34. Por exemplo, para a água:

  35. Quando: Q>0: o corpo funde ou vaporiza. Q<0: o corpo solidifica ou condensa. Exemplo: Qual a quantidade de calor necessária para que um litro de água vaporize? Dado: densidade da água=1g/cm³ e calor latente de vaporização da água=540cal/g.

  36. Solução

  37. Curva de aquecimento Ao estudarmos os valores de calor latente, observamos que estes não dependem da variação de temperatura. Assim podemos elaborar um gráfico de temperatura em função da quantidade de calor absorvida. Chamamos este gráfico de Curva de Aquecimento:

  38. Trocas de calor Para que o estudo de trocas de calor seja realizado com maior precisão, este é realizado dentro de um aparelho chamado calorímetro, que consiste em um recipiente fechado incapaz de trocar calor com o ambiente e com seu interior.

  39. Dentro de um calorímetro, os corpos colocados trocam calor até atingir o equilíbrio térmico. Como os corpos não trocam calor com o calorímetro e nem com o meio em que se encontram, toda a energia térmica passa de um corpo ao outro. Como, ao absorver calor Q>0 e ao transmitir calor Q<0, a soma de todas as energias térmicas é nula, ou seja:

  40. ΣQ=0 (lê-se que somatório de todas as quantidades de calor é igual a zero) Sendo que as quantidades de calor podem ser tanto sensível como latente.

  41. Exemplo: Qual a temperatura de equilíbrio entre uma bloco de alumínio de 200g à 20°C mergulhado em um litro de água à 80°C? Dados calor específico: água=1cal/g°C e alumínio = 0,219cal/g°C.

  42. Capacidade térmica É a quantidade de calor que um corpo necessita receber ou ceder para que sua temperatura varie uma unidade. Então, pode-se expressar esta relação por:

  43. Sua unidade usual é cal/°C. A capacidade térmica de 1g de água é de 1cal/°C já que seu calor específico é 1cal/g.°C.

  44. Transmissão de Calor Em certas situações, mesmo não havendo o contato físico entre os corpos, é possível sentir que algo está mais quente. Como quando chega-se perto do fogo de uma lareira. Assim, concluímos que de alguma forma o calor emana desses corpos "mais quentes" podendo se propagar de diversas maneiras. Como já vimos anteriormente, o fluxo de calor acontece no sentido da maior para a menor temperatura.

  45. Este trânsito de energia térmica pode acontecer pelas seguintes maneiras: - condução; - convecção; - irradiação.

More Related