1 / 13

HITUNG KEUANGAN

HITUNG KEUANGAN. Widita Kurniasari. Modul 10. Agustus 2006. BUNGA ( INTEREST ). Bunga ( interest ) ≠ tingkat bunga ( interest rate ) Bunga merupakan : Opportunity cost Risk Time value of money Jenis-jenis perhitungan bunga : Bunga tunggal Diskonto Bunga majemuk

kalare
Télécharger la présentation

HITUNG KEUANGAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HITUNG KEUANGAN Widita Kurniasari Modul 10 Agustus 2006

  2. BUNGA (INTEREST) • Bunga (interest) ≠ tingkat bunga (interest rate) • Bunga merupakan : • Opportunity cost • Risk • Time value of money • Jenis-jenis perhitungan bunga : • Bunga tunggal • Diskonto • Bunga majemuk • Bunga kontinyu (roll on) • Bunga efektif

  3. PERHITUNGAN NILAI YANG AKAN DATANG (FUTURE VALUE = F) • Bunga Tunggal : F = P (1 + n.i) • Bunga Majemuk : F = P (1 + i )n • (1 + i)n : compounding factor • Bunga Kontinyu (roll on) : F = P (1 + i/k)n.k jika k tak terhingga, maka : sehingga : F = P.en.i

  4. BUNGA MAJEMUK • Perhit. nilai sekarang (Present Value = P) P = F/(1 + i)n • 1/(1 + i)n : discount factor • Perhitungan i : i = (F/P)1/n – 1, atau • Perhitungan n : • Perhit. bunga efektif : i = ((1 + r%)k – 1) x 100%

  5. Lanjutan .. • Perhit. Jumlah Nilai Akhir, JNA, (Compound Sum), F : • F > n.A • Perhitungan A : • A < F/n • i/((1 + i)n – 1) = 1/Sn = sinking fund factor • Perhitungan n :

  6. Lanjutan .. • Perhit. Jumlah Nilai Sekarang, JNS, (Present Value of an Annuity), P : • P < n.A • Perhitungan A : • A > P/n • i(1+i)n/((1 + i)n – 1) = 1/Sn = capital recovery factor

  7. ANUITAS (ANNUITY) • Serangkaian pembayaran/tagihan yang jumlahnya tetap (A) tiap periode selama jangka waktu tertentu (n). • Anuitas terdiri dari : • Angsuran dari hutang/pinjaman pokok (ak), yang nilainya semakin naik dengan rasio (1+i) • Bunga dari sisa hutang/pinjaman (bk), yang nilainya semakin menurun. • Rumus Umum : A = a1 + b1 = a2 + b2= . . . = an + bn

  8. Lanjutan .. • Perhitungan ak : • ak = a1(1 + i)k-1  a1 = ak/(1 + i)k-1 • ak = am(1 + i)k-m  ak/am = (1 + i)k-m • a1 = A/(1 + i)n  A = a1(1 + i)n • ak = A/(1 + i)n-k+1 • Perhitungan bk : bk = i(P – a1 – a2 – . . . – ak-1)  b1 = iP

  9. Lanjutan .. • Perhitungan Jumlah Nilai Sekarang (JNS), P : P = a1 + a2 + . . . + an • Perhitungan jumlah cicilan hutang (n)

  10. Lanjutan .. • Perhitungan Sisa/Saldo Hutang dari Pinjaman Sk = P – (a1 + a2 + . . . + ak) • atau : • atau :

  11. Lanjutan .. • Anuitas yang ditangguhkan (Differed Annuity) • Perhitungan P : • Perhitungan A :

  12. Lanjutan .. • Tabel Pelunasan Pinjaman secara Anuitas (P = 2 jt, n = 5 th, i = 18% per th)

  13. Lanjutan .. • Pelunasan Hutang Secara Flat Rate • Angsuran : • Hubungan flat rate (f) dengan interest rate (i)

More Related