400 likes | 480 Vues
Seqüência e qualidade. Uso da b i o i nformática na análise genômica. A. ATCTCGTAGCT. ATCTCGTAGCT A. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. ATCTCGTAGCT. G.
E N D
A ATCTCGTAGCT ATCTCGTAGCTA ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT ATCTCGTAGCT G ATCTCGTAGCTAG C ATCTCGTAGCTAGC T ATCTCGTAGCTAGCT A ATCTCGTAGCTAGCTA C ATCTCGTAGCTAGCTAC G ATCTCGTAGCTAGCTACG A ATCTCGTAGCTAGCTACGA C ATCTCGTAGCTAGCTACGAC G ATCTCGTAGCTAGCTACGACG T ATCTCGTAGCTAGCTACGACGT C ATCTCGTAGCTAGCTACGACGTC T ATCTCGTAGCTAGCTACGACGTCT A ATCTCGTAGCTAGCTACGACGTCTA TAGAGCATCGATCGATGCTGCAGATGATGCTAGCATCGGCTAGGCGACG uma fita molde é sequenciada de cada vez iniciadores crescem até que uma unidade interruptora entre eletroforese capilar e leitura da fluorescência da unidade interruptora
Início Bioinformática Receber Processar Anotar Depositar Fim
30 20 10 50 40 30 20 10 0 Processamento de seqüências cromatograma acgatctcgctagctgctactgtagccgcgattattcgcgatctacgtatatcgcgatcgatc • O programa Phred lê o cromatograma e nomeia as bases • Cada base tem uma chance de erro de sua nomeação (10% = 0,1) • A escala de Phred é semelhante à de pH multiplicado por 10: • - chance de erro de 0,001 = 10-3 = Phred 30 • A nomeação é praticamente aleatória no início e no final, onde a chance de erro é alta (baixo valor de Phred)
I Brazilian Workshop on BioinformaticsOctober 18th, 2002, Gramado, RS, Brazil
Crescimento do GenBank 45 milhões Seqüências 16.000.000 14.000.000 24h 12.000.000 10.000.000 Europeu Japonês 8.000.000 6.000.000 4.000.000 2.000.000 606 0 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Ano
Seqüências do mRNA (genes expressos) Amostragem tecidos momentos Eucariotos mRNA Seqüencias do DNA (genoma) • Repetição calculada • draft = 5x • finished = 10x Genoma pequeno (seqüenciador grande) TR cDNA
Seqüênciamento de genes expressos: Documentar a existência de transcritos gênicos num transcriptoma[otorrin... e ...damonh...] • EST (Etiqueta de Seqüência Expressa) • seqüenciamento único de cada cDNA • extremidades 5’ ou 3’ • ORESTES (ESTs ricas em ORFs) • seqüenciamento único do amplicon derivado de cDNA por PCR inespecífico • prevalece o centro do cDNA (cds)
Um mRNA & suas ESTs (A)200 (A)200 mRNA cDNA (fita +) AUG ATG (A)18 ATCATGACTTACGGGCGCGCGAT AAATTTATTATCC (T)18 5’EST cDNA (fita -) 3’EST mRNA cDNA (fita +) AUG (A)18 GGCGCGCGATATCC AAATTTATTATCCATCTACG (T)18 5’EST cDNA (fita -) 3’EST
PCR inespecífico & seu ORESTES (A)200 amplicon (fita +) amplicon (fita -) PCR (60ºC) Iniciador (60ºC 37ºC) +ORESTES (outros iniciadores) mRNA amplicon (fita +) AUG GGGCGCGCGATATCGAAAAATTTATAAGGCTAG CCCCGGCGGCTCGGCCGGGGAGATCGATCATGAC AGATCGATCATGACTTACGGGCGCGCGATATCG ORESTES cDNA (fita -)
26,630,649 250 200 150 100
O formato FASTA, o mais simples, é anotado >Gene5 EST com homologia... ACTATTACGGCGTAGCTGTAGCTACGTAGCTAGCTGATGCTGACTGATCGTAGCTAGCTGACTGATCGTACGTAGTGTTTTTTTACGTGCGTATTtCTagCTaGtc Seqüências > 50 nt, sem ambiguidades e com anotação, ganham entrada no Entrez Protein/Nucleotide
Transcriptoma de S. mansoni Rede Genoma de Minas Gerais • dbEST: ESTs 5’ e 3’ • Trace Arquive: dados originais • Entrez Nucleotide: > 50 nt, em fase, com anotação • Entrez Protein: proteínas deduzidas selecionadas • mineração automática (KOG, BioCarta e KEGG) • mineração manual (interesse de grupos) • UniGene: • dados de expressão diferencial (microarray e DGED) • I MISS YOU
Alinhador local • Identifica, numa coleção de seqüências, as que apresentam alinhamento com a sua. • Fragmenta sua seqüência e procura homologia no banco de dados. • Descarta todas as pesquisas com pontuação pequena (score baixo) e vai alinhando a vizinhança das com pontuação boa, até chegar ao máximo valor. • É fácil verificar que algumas regiões de certos genes alinham bem, mas outras pouco conservadas, não. O Alinhador Local não quer chegar ao alinhamento final, ele só quer identificar sequências com um nível de homologia significativo
Alinhamento local • O fundamento teórico é que a função gênica está quase sempre confinada em domínios contínuos de uma proteína • Se não fosse assim, não teria sentido usar...
Programas BLAST & Bancos • Há vários Programas BLAST úteis • Alguns são usados quando a sua sequência é de nucleotídeos (BLASTn, BLASTx e tBLASTx) • Outros são usados quando a sua seqüência é de aminoácidos (BLASTp) • E vários bancos de dados para escolher (nr, pdb, dbEST, yeast, month, etc...) • Ou usa-se limites [organism]
BLASTn e BLASTx • A EST identifica o gene homólogo: BLASTn • A EST identifica proteína ortóloga de outro organismo - a evolução conservou a proteína enquanto o DNA divergiu: BLASTx • BLASTx: a EST traduzida em seis proteínas • 1 existe, 5 não... • O mundo Blast é assim
tBLASTx • tBLASTx traduz sua seqüência de nucleotídeos para proteína nas 6 possibilidades, exatamente como BLASTx • Depois pesquisa com essas 6 proteínas deduzidas, um banco de dados de nucleotídeos também traduzido dessa maneira • Pra que serve? Pois imagine que a telomerase de Euplotes seja parecida com a telomerase humana, mas os dois DNA não! • Traduzindo a seqüência pesquisada e o banco de dados dbEST foi possível encontrar seqüências da telomerase humana
bioinformática Receber Processar Anotar Depositar
Aglomerados ou Clusters • Uma das atividades em bioinformática é formar aglomerados de todas as sequências geradas no projeto (as figurinhas de um álbum) • Podemos saber quantas vezes um gene foi seqüenciado, e detectar os freqüentes! • E quantos dos genes foram detectados • Usa-se também para validar bibliotecas
Programas para aglomerar • Icatools • Phrap • Cap3, Cap4 • Swat • BLAST • MegaBLAST Um aglomerado = Um gene
Qualidade das bibliotecas(100 primeiras ESTs) Boa biblioteca ? Número de seqüências 1 2 3 4 5 7 9 11 Freqüência em que uma EST foi amostrada
UniGene • Organização das sequências do GenBank em um conjunto de aglomerados • Cada aglomerado do UniGene contém as sequências que representam um gene único • E também informações relacionadas, como em que tecidos o gene é expresso, etc. • E também onde está mapeado
MegaBLAST gera o UniGene Todas ESTs contra todas Detecção de homologia > 96% de identidade > 70% do potencial Aglomerar
Construção de UniGene para AW1 (5.145 ESTs correspondem a 2.026 clusters) Número de algomerados Número de seqüências no aglomerado identidade > 96 % alinhamento > 70 % do potencial Etapa
Interface gráfica • Alternativa para encontrar só o gene
Online Mendelian Inheritance in Man • Um catálogo de genes humanos e anomalias genéticas de autoria do Dr. Victor A. McKusick e seus colaboradores e desenvolvido para a Web pelo NCBI • Funciona como uma revisão já feita
catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctaactagctgactgcatcgatcgatcgtcgtagctacgtagctagctagctagctagctagctaactagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatggtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctatctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgattgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg catcgatcgatcgtcgtagctacgtagctagctagctagctagctagctagctagctgactg SNP
No NCBI é acessado um banco de dados: MMDB • Molecular Modelling DataBase (PDB sem teóricos) • O banco de dados PDB tem um mirror no Brasil • www.pdb.ufmg.br • Arquivos do tipo “1MEY.pdb” são descarregados • As coordenadas 3D de totos os átomos • As proteínas podem ser vistas com programas (RasMol) ou direto no navegador (Plug-in Chime)
Modelagem Molecular por Homologia • A proteína precisa ter uma ortóloga no PDB • Pode ser automaticamente modelada pelo Swiss Model (Modeller na UFMG) • Já modelaram todas proteínas • confira 3DCrunch: