1 / 64

大亚湾反应堆中微子实验 及其进展

大亚湾反应堆中微子实验 及其进展. 张家文 中国科学院高能物理研究所. 报告内容. 科学意义与目标 研究内容与方案 目前状况与预研进展 项目队伍 、 组织与管理 进度计划. 测量 q 13 的物理意义. 1)是自然界的基本参数 2)对理解轻子与夸克之间的关系,研究比目前的粒子物理标准模型更基本的大统一理论具有重要意义 3)对解释宇宙中物质-反物质不对称极为重要 如果 sin 2 2 q 13 >0.01 , 下一代长基线实验 可以 测定 CP 相角。 如果 sin 2 2 q 13 <0.01 ,下一代长基线实验 不能 测得 CP 相角。

Télécharger la présentation

大亚湾反应堆中微子实验 及其进展

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 大亚湾反应堆中微子实验及其进展 张家文 中国科学院高能物理研究所

  2. 报告内容 • 科学意义与目标 • 研究内容与方案 • 目前状况与预研进展 • 项目队伍、组织与管理 • 进度计划

  3. 测量q13的物理意义 1)是自然界的基本参数 2)对理解轻子与夸克之间的关系,研究比目前的粒子物理标准模型更基本的大统一理论具有重要意义 3)对解释宇宙中物质-反物质不对称极为重要 • 如果sin22q13>0.01,下一代长基线实验可以测定CP相角。 • 如果sin22q13<0.01,下一代长基线实验不能测得CP相角。 4)对中微子物理的未来提供了发展方向 是否要建中微子工厂或超级束流?

  4. 大亚湾与Double Chooz 的比较

  5. 大亚湾中微子实验 • 目前热功率共 12GW, 2011年将增加到18GW。 • 周围有山,便于建设地下实验室以屏蔽宇宙线本底是关键,因为中微子产生的讯号十分微弱。 • 测量sin22q13至0.01的精度,具有极为重要的意义 • 大亚湾实验可以达到这个要求,是目前国际设计精度最高的实验

  6. 过去实验的精度: 3-6% 裂变元素及n能谱: ~ 2% 反应堆功率:~1% 中微子能谱:~0.3% 本底:~1-3% 液闪中靶质量:~1-2% 中微子探测效率:~2-3% 实验方法: 比较观测与预期的中微子能谱 用远点与近点间的相对测量来消除与反应堆有关的误差 将充分屏蔽的探测器置于地下深处来消除本底误差 用特殊设计的探测器及其在远近点间的相对测量来消除与探测器有关的误差

  7. 实验安排 1600m to LA, 1900m to DYB Overburden: 350m Muon rate: 0.04Hz/m2 两个近点:DYB/LA 一个中点:MID 一个远点 隧道总长度:~3000 m Baseline: 500m Overburden: 98m Muon rate: 0.9Hz/m2 0% slope Baseline: ~1000m Overburden: 208m 0% slope 0% slope Baseline: 360m Overburden: 97m Muon rate: 1.2Hz/m2 8% slope

  8. 实验方法: 用液闪探测中微子 t  180 or 28 ms(0.1% Gd) n + p  d + g (2.2 MeV) n + Gd  Gd* + g (8 MeV) Neutrino Event: coincidence intime, space and energy Neutrino energy: 10-40 keV 1.8 MeV: Threshold

  9. 探测器设计:多模块与多重反符合 Other options are under investigation Redundancy is a key for the success of this experiment

  10. 建设内容 • 隧道系统(在此不讲) • 中心探测器系统 • 反符合系统 • 读出电子学,触发与数据获取系统 • 软件与物理分析系统 • 机械系统

  11. Position resolution~14cm 中心探测器系统 • 圆柱型三层结构中心探测器: I. 靶: 掺轧液闪(r=1.6m,h=3.2m) II. 集能层: 普通液闪(r=45cm,h=4.1m) III.屏蔽层: 矿物油(r=45cm,h=5m) • 每个模块20吨靶质量, 总共80吨 • 四周加光电倍增管读出中微子信号 • 上下加光学反射层,节省1/2光电倍增管 • 每个模块用 ~ 224个 8”PMT • 分辨率:sE /E = 5%@8MeV, ss ~ 14 cm I III II

  12. 16个有机玻璃罐 设计: 机械强度与结构 光学性能 使用要求 与液闪的化学反应 长期稳定性 A 2m cylinder Joint almost invisible 制造 成型方法 精度(<2mm) 强度/壁厚(<1cm) 残余应力 与液闪的化学反应 粘接工艺 清洁

  13. 八个不锈钢罐:5m×5m • 机械强度,几何尺寸,。。。

  14. 液体闪烁体 • 数量:160吨掺钆液闪,180普通液闪,400吨矿物油 • 要求: • 高的发光效率 (>50% antracene) • 长的衰减长度(>10m) • 长期稳定性(>5year) • 与有机玻璃不发生化学反应 • 过去的问题: 不稳定 • Palo Verde : 55% antracene, 11m, 0.03%/day • Chooz: ~55% antracene, ~10m, 0.4%/day • 高能所目前已取得的成绩: • 自制了测量液闪发光效率及衰减长度的设备 • 研究了清洁液闪的化学方法,特别是去除钍元素的办法 • 寻找与测试了国产原材料,均能满足要求 • 研制了多种满足前述要求的掺钆液闪

  15. 液闪及其原料的测量结果 Gd-loaded scintillator developed at IHEP LAB High light yield, very transparent High flash point 147oC, environmentally friendly Low cost 研究单位: 高能所,BNL,JINR Stability of Gd-loaded scintillator developed at BNL

  16. 批量生产 • 液闪的配制 • 配方 • 混合程序 • 混合设备 • 原料 • 液闪的处理 • 放射性元素的去除 • 灰尘的去除 • 有害化学元素的去除 • 液闪的灌装 • 清洁度的保证 • 化学成分(一致性,杂质等)的保证(H/C, Gd/H,…) • 体积与总重量的保证(<0.1%)

  17. 光电倍增管及其支撑结构 • 共需 ~ 1792 8” PMT • 极低本底无钾玻璃 • EMI 或 Hamamatzu • 高稳定性信号与高压电缆 • 指标: • 放大倍数: > 5×106 • 线性: > 500 P.E. • 噪声: < 5 KHz @ 15oC @ ¼ PE • 放射性: 238U, 232Th, 40K < 20-50 ppb

  18. 刻度与监测 • 放射源刻度: 能量标度,分辨率, … • 置入系统 • 自动系统: 快速但有限空间位置 • 手动系统: 所有空间位置但较慢 • 放射源的选择: 能量(0.5-8 MeV), 活度(<1KHz), g/n,… • 清洁 • 物理事例刻度 • 中子俘获 • 宇宙线 • LED刻度: PMT gain, liquid transparency, … • 环境监测: 温度,高压,电流电压,氡气… • 靶质量测量及高精度流量计 • 材料的放射性测量与认证

  19. 水屏蔽与反符合探测器系统 • 用2米以上的水屏蔽宇宙线造成的中子本底和岩石造成的g 本底 • 反符合探测器的要求: • 效率 > 99.5% • 效率误差 < 0.25% • 解决办法:两套探测器: • 水切伦科夫探测器, Eff.>95% • Muon 探测器, Eff. > 90% • RPC • scintillator strips • total ineff. = 10%*5% = 0.5% Neutron background vs water shielding thickness 2m water

  20. 水切伦科夫探测器 • 水池: • 为国际上多个中微子实验采用 • 需~ 900 PMT • 水箱: • 为长基线中微子实验提出 • 已完成模型实验 • 需~1248 PMT

  21. 阻性板探测器(RPC) • 在水箱上部精确标记宇宙线事例 • 共三层, 2640 m2 • 读出道: ~ 21200道 • 高能所在BESIII建设中自行研制了具有国际影 响的新工艺

  22. 光电倍增管读出电子学 • 指标: • 电荷动态范围: 0 ~ 500 p.e. • 电荷分辨率: 10% @1 p.e. • 噪声: < 0.1 p.e. • 时间动态范围: 0 ~ 500 ns • 时间分辨率: < 500ps • 9U VME 规范 • 16 道/读出板, 中心探测去需120 块板

  23. RPC读出电子学 • 在BESIII实验中采用 • 技术先进, 造价低廉 • 指标: • 位置信息(hit)

  24. 触发系统 • 每个探测器模块一个独立触发 • 中心探测器共8块触发板 • 水切伦科夫探测器3块触发板 • 水箱切伦科夫探测器3块触发板 • RPC 3块触发板 • 每块触发板: • 能量 • 多重数 • 时间标记 • 时钟分布系统

  25. 数据获取系统 • 三个相对独立系统 • 一个中央控制系统 • 大量借用BESIII技术与成果 • 事例率: > 1KHz

  26. 数字地形图:研究宇宙线本底及实验大厅选址

  27. 本底及其误差 • 非关联误差: U/Th/K/Rn/neutron 单gamma 记数率 @ 0.9MeV < 50Hz 单中子记数率 < 1000/day 2m water + 45 cm oil shielding • 宇宙线造成的关联误差: n  Em0.75 中子:>100 MWE + 2m water Y.F. Wang et al., PRD64(2001)0013012 8He/9Li: > 250 MWE(near),>1000 MWE(far) T. Hagner et al., Astroparticle. Phys. 14(2000) 33

  28. 系统误差

  29. 基线优化及Sin22q13 灵敏度 此公式自动考虑了远近点 相对测量及探测器远近点 交换造成的误差抵消 • 反应堆关联误差: sc ~ 2% • 反应堆非关联误差: sr ~ 1-2% • 中微子能谱误差: sshape ~ 2% • 探测器关联误差: sD ~ 1-2% • 探测器非关联误差: sd ~ 0.5% • 本底误差: • 宇宙线产生的快中子: sf ~ 100%, • 随机符合: sn ~ 100%, • 宇宙线产生的8Li, 9He, … : ss ~ 50% • Bin-to-bin 误差: sb2b ~ 0.5%

  30. 大亚湾实验测量 Sin22q13的灵敏度

  31. 大亚湾实验的其它物理目标 • 首次测量DM213 • 测量超新星中微子 • 寻找不活跃的中微子 大亚湾中微子实验可作为我国中微子物理研究的起点

  32. 已开展的预研: • 实验大厅选址与勘探 • 掺钆液体闪烁体的纯化,过滤与配制 • 有机玻璃罐研制 • 光电倍增管测试 • 小模型研制 • 电子学读出系统研制 • 刻度方法研究

  33. 探测器模型研制

  34. Resolution: 8.5%/E 137Cs spectrum 2.505 MeV 2.295 MeV 1.332 MeV 1.275 MeV 1.173 MeV 1.022 MeV 0.662 MeV Response at different locations linearity

  35. 项目队伍,组织与管理

  36. 国内队伍 • 高能物理研究所 • 总体设计,隧道建设,探测器建造,读出电子学与数据获取,物理软件,安装调试 • 中国原子能研究院 • 刻度系统 • 清华大学 • 触发 • 北京师范大学 • 光电倍增管测试 • 深圳大学 • 材料放射性测试 • 中山大学 • 光电倍增管测试 • 南开大学 • 刻度系统 国内还有其它单位可能参加,特别是中国广东核电集团作为大亚湾核电站群的业主,将正式参加本实验,对隧道建设,探测器建造,和反应堆物理分析将作出重要贡献。

  37. 中广核合作 • 中国科学院与中国广东核电集团有限公司9月29日在北京签署科技合作框架协议。双方将建立长期战略合作关系,为全面开展科技合作搭建基础平台,以共同推进我国核能先进技术、核物理、高能物理等领域科技创新事业的发展。 • 10月13日,高能所大亚湾反应堆中微子实验工程指挥部成员王贻芳等一行五人访问中国广东核电集团,双方对大亚湾反应堆中微子实验项目的合作进行了多方面的细致讨论,就建立联合办公室、建设地面实验站和实验用地问题等具体合作事宜达成了一致意见。

  38. 组织管理 • 高能所已成立大亚湾工程指挥部 • 各系统骨干人员 • 按国际惯例组成合作组,制定了章程 • 组成了合作组委员会 • 选举了七人执行委员会 • 选举了发言人 • 建立了工作小组 • 初步讨论了各方的任务分工

  39. Daya Bay collaboration Europe (3) JINR, Dubna, Russia Kurchatov Institute, Russia Charles university, Czech North America (9) LBNL, BNL, Caltech, UCLA Univ. of Houston,Univ. of Iowa Univ. of Wisconsin, IIT, Univ. of Illinois-Urbana-champagne Asia (12) IHEP, CIAE,Tsinghua Univ. Zhongshan Univ.,Nankai Univ. Beijing Normal Univ., Shenzhen Univ., Hong Kong Univ. Chinese Hong Kong Univ. Taiwan Univ., Chiao Tung Univ., National United Univ.

  40. X. Guo, N. Wang, R. Wang Beijing Normal University, Beijing 100875 L. Hou, B. Xing, Z. Zhou China Institute of Atomic Energy, Beijing 102413 J. Cao, H. Chen, J. Fu, J. Li, X. Li, Y. Lu, Y. Ma, X. Meng, R. Wang, Y. Wang, Z. Wang, Z. Xing, C. Yang, Z. Yao, J. Zhang, Z. Zhang, H. Zhuang, M. Guan, J. Liu, H. Lu, Y. Sun, Z. Wang, L. Wen, L. Zhan, W. Zhong Institute of High Energy Physics, Beijing 100039 Z. Li, C. Zhou Zhongshan University, Guangzhou 510275 X.Q. Li, Y.Xu, S. Fang Nankai University, Tianjin 300071 Y. Chen, H. Niu, L. Niu Shenzhen University, Shenzhen 518060 S. Chen, G. Gong, B. Shao, M. Zhong, H. Gong, L. Liang, T. Xue Tsinghua University, Beijing 100084 M.C. Chu, W.K. Ngai Chinese University of Hong Kong, Hong Kong K.S. Cheng, J.K.C. Leung, C.S.J. Pun, T. Kwok, R.H.M. Tsang, H.H.C. Wong University of Hong Kong, Hong Kong B.Y. Hsiung National Taiwan University, Taipei G.L. Lin,F.S. Lee, Y.S. Yeh National Chaotung University, Hsinchu C.H. Wang National United University, Hsinchu Yu. Gornushkin, R. Leitner, I. Nemchenok, A. Olchevski Joint Institute of Nuclear Research, Dubna, Russia V.N. Vyrodov Kurchatov Institute, Moscow, Russia Z. Dolezal, R. Leitner, V. Pec, V. Vorobel Charles University, the Czech republic M. Bishai, M. Diwan, D. Jaffe, J. Frank, R.L. Hahn, S. Kettell, L. Littenberg, K. Li, B. Viren, M. Yeh Brookhaven National Laboratory, Upton, NY 11973-5000, USA R.D. McKeown, C. Mauger, C. Jillings California Institute of Technology, Pasadena, CA 91125, USA K. Whisnant, B.L. Young Iowa State University, Ames, Iowa 50011, USA W.R. Edwards, K.B. Luk University of California and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA V. Ghazikhanian, H.Z. Huang, S. Trentalange, C. Whitten Jr. University of California, Los Angeles, CA 90095, USA M. Ispiryan, K. Lau, B.W. Mayes, L. Pinsky, G. Xu, L. Lebanowski University of Houston, Houston, Texas 77204, USA J.C. Peng University of Illinois, Urbana-Champaign, Illinois 61801, USA W. Luebke, C. White Illinois Institute of Technology K. Heeger University of Wisconsin, Madison, USA The Daya Bay Collaboration

  41. 美国能源部 中国政府部门 其它 国际资金委员会 (IFC) 实验监管机构(LOG) H.S. Chen, S. Aronson, J. Segrist 项目顾问团 (PAP) 发言人与合作 执行委员会 中方项目经理及 管理办公室 美方项目经理及 管理办公室

  42. 进度计划

  43. 小结 • 测量 Sin22q13至 0.01 精度具有十分重要的物理意义,要求用反应堆中微子实验来测量。 • 大亚湾核电站是这类实验的理想场所,这是中国基础科学发展的一个难得机遇。 • 初步研究发现没有不可克服的技术困难,国内的工业界有能力完成主要任务。 • 初步设计已经基本完成,工程设计已经开始。

  44. 谢谢!

More Related