320 likes | 466 Vues
Cadeia de aas formam proteína. Proteínas. Uma proteína pode conter até milhares de aminoácidos diferentes, podendo até virar macromoléculas tridimensionais. COMPOSIÇÃO. Citocromo C: 13.000 Ribonuclease: 14.000 Mioglobulina: 17.000 Gliadina: 28.000 Pepsina: 35.500 Insulina: 36.000
E N D
Proteínas • Umaproteína pode conter atémilhares de aminoácidosdiferentes, podendo até virarmacromoléculastridimensionais. COMPOSIÇÃO • Citocromo C: 13.000 • Ribonuclease: 14.000 • Mioglobulina: 17.000 • Gliadina: 28.000 • Pepsina: 35.500 • Insulina: 36.000 • Ovoalbunina: 45.000 • Hemoglobina: 68.000 • Soroglobulina: 180.000 • Caseína: 375.000 • Fribrinogênio: 450.000 • Tiroglobulina: 630.000 • Hemocianina: 2.800.000 • Vírus: 250.000.000 Composição: • Contém sempre: • elementos organógenos: C, H, O, N • menor proporção: S, P, I, Br • Composição percentual: • C: 50 à 55% • H: 6 à 7% • O: 19 à 24% • N: 15 à 19% • S: 0 à 2,5%
Classificação 2. Seu papel biológico • Proteínas Estruturais ou de Construção: são as responsáveis pela construção dos tecidos. • Colágeno (ossos, cartilagem, tendões e pele); • Queratina (pelos, cabelo, unha); • Miosina (músculos responsáveis pela contração); • Albumina (plasma sangüíneo); • Hemoglobina (hemáceas – transporta gases).
Classificação 2. Seu papel biológico • Proteínas Reguladoras: são as que controlam e regulam as funções orgânicas. • Enzimas (são catalisadoras das reações do metabolismo: amilase, maltase, pepsina, etc) • Hormônios (regulam as funções orgânicas: insulina, gastrina ACTH e etc).
Classificação 2. Seu papel biológico c) Proteínas Protetoras ou de Defesa: são os anticorpos que defendem o organismo e são produzidos por células específicas do sistema imunológico, chamadas linfócitos. • Antitoxinas: neutralizam as toxinas dos agentes de infecção, como as bactérias; • Aglutininas: aglutinam certos agentes de infecção; • Opsoninas: tornam os agentes de infecção mais facilmente atacados pelos fagócitos; • Lisinas: dissolvem certos agentes de infecção
Classificação 3. Valor Nutritivo Chamadas também de ALTO valor Biológico • Proteínas Completas: são as que provêm e mantêm o ser vivo. • Caseína (leite) • Ovoalbuminas e ovovitelinas (ovo) • Glicinina (soja) • Edestina e glutenina (cereais) • Lactoalbuminas (leite e queijo) • Albumina e miosina (carne) • Excelsina (castanha do Pará) • 2. Proteínas semi-completas: são as que provêm,mas não mantêm o ser vivo. • Gliadina (trigo) • Legunina (ervilha) • Faseolina (feijão) • Legumelina (soja) Contém Aa em quantidade e qualidade suficientes para suprir as necessidades! Contém Aa em quantidade ou qualidade insuficientes para suprir as necessidades! IMPORTANTE: Uma proteína é considerada de ALTO VALOR BIOLÓGICO – quando possui em sua composição TODOS os aminoácidos essenciais em quantidades adequadas.
Classificação 3. Valor Nutritivo • Proteínas incompletas ou não completas: são as proteínas incapazes de prover e manter a vida. • Zeína (milho – falta triptofano e tirosina) • Gelatina (falta triptofano e tirosina) Contém Aa em quantidade ou qualidade insuficientes para suprir as necessidades! Chamadas também de BAIXO valor Biológico -
BIO-QUIMICA Classificação:Estrutura • 1 - Primária • • 2 -Secundária • • 3 -Terciária • • 4 - Quaternária
Estrutura • Primária ou nível primário. • Secundária ou nível secundário ou helicoidal • Terciária ou nível terciário • Quaternária ou nível quaternário
Estrutura • Estrutura Primária ou Nível Primário • É a seqüência em número de aminoácidos (cadeia peptídica). A ligação estabilizante é a ligação peptídica (covalente). Se imaginarmos os aminoácidos representados por letras: A, B, C, D, ... teremos uma esquematização da estrutura primária de uma proteína: ........A – B – C – D – A – D – A -.............. É importante salientar que o número de aminoácidos determina o número de proteínas. [Fatorial (!) do nº de aa]. • Uma variação na seqüência conduz a uma proteína diferente e com ação bioquímica diferente. Ex: a ocitocina e a vasopressina diferem entre si na seqüência de apenas dois aa; a ocitocina provoca as contrações uterinas e a vasopressina provoca aumento da pressão sangüínea.
Estrutura • Estrutura secundária ou nível secundário (helicoidal) É o enrolamento da estrutura primária em torno de um eixo imaginário, originando uma hélice chamada de hélice. Assim, esta estrutura está relacionada com a disposição espacial das estruturas primárias, e pode ser em forma de um hélice ou uma folha pregueada.
Estrutura • As ligações estabilizantes dessa estrutura secundária são: • Ligação ou Ponte de Hidrogênio: formada pela interação ou atração entre: - oxigênio da carboxila de um aa e hidrogênio do grupo amino de outro/ - oxigênio da carboxila de um aa e hidrogênio do grupo carboxila de outro. • Ligação Iônica: formada pela atração entre as cadeias laterais dos aa ácidos e aa básicos. • Ligação hidrófoba ou apolar: formada pela interação de radicais apolares como: metil, etil, metileno, etc; dos aa constituintes da molécula. • Ligação ou ponte dissulfeto: formada pela união de grupos –SH dos aa chamados de cisteína. OBS: - As ligações estabilizantes em maior número são as pontes de H. - A ligação estabilizante mais forte é a ligação dissulfeto.
Estrutura Secundária Hélice Laminar
Estrutura • Estrutura terciária ou nível terciário É a sua forma tridimensional ocasionada pelo enrolamento da espiral sobre si mesma (novelo). As ligações estabilizantes são as mesmas da estrutura secundária.
Estrutura Terciária • Professora Dra Rosi Bio-quimica.blogspot.com
Estrutura • Estrutura Quaternária ou Nível Quaternário É a que resulta da reunião de várias estruturas terciárias que, em conjunto, assumem formas espaciais bem definidas. As ligações estabilizantes são as mesmas da estrutura secundária. OBS: nem todas as proteínas apresentam esta estrutura, mas de uma maneira geral, todas as enzimas as apresentam.
Estrutura Quaternária • Professora Dra Rosi Bio-quimica.blogspot.com
Desnaturação • A desnaturação de uma proteína é a desorganização das estruturas quaternárias, terciárias e secundárias. • Agentes desnaturantes são os que provocam a desorganização. • São eles: - agentes físicos(calor, radiações UV, alta pressão e ultra som) - agentes químicos(ácidos fortes, bases fortes, metais pesados e uréia) • A proteína desnaturada apresenta as seguintes alterações: • Físicas: aumento da viscosidade; não podem ser cristalizadas ou autoorganizadas. • Químicas: maior reatividade: devido a exposição de grupos químicos que estavam encobertos por estruturas; diminuição da solubilidade do PHi e, conseqüente precipitação. • Biológicas: perda de suas propriedades enzimáticas, antigênicas e hormonais; facilmente digeridas por enzimas hidrolíticas.
Muitas proteínas apresentam-se firmemente enrolada em seu estado natural, como um novelo de lã. Porém, se alguma destas interações forem quebradas, sua forma será alterada e sua conformação – perdida! Chamamos isso de DESNATURAÇÃO DE UMA PROTEÍNA. • SÃO AGENTES DESNATURANTES: • pH – abaixo de 5,0 • Temperatura – acima de 50 0C
Desnaturação Coagulação: é a desnaturação drástica, ou seja, é um processo irreversível de precipitação, porque não pode-se mais solubilizar a proteína.
Proteínas • Propriedades Gerais • Caráter anfótero • Ponto isoelétrico (pI) • Característica de eletrólitos • Solubilidade
Caráter anfótero Presença de grupos -NH3+ e -COO- Caráter básico ou ácido; dependendo do pH do meio Ponto isoelétrico pH que apresenta igualdade cargas (+) e (-) pl proteína apresenta menor solubilidade Característica de eletrólito Grupos ionizáveis garante presença de cargas (+) e (-)
hidrofílica solubilidade hidrofóbica solubilidade Solubilidade das proteínas Depende da quantidade de pontes de H que formam com a água
Solubilidade pH próximo do pI solubilidade Diminuem as forças repulsivas entre as moléculas das proteínas Agregados Precipitam
FUNÇÃO DAS PROTEÍNAS ANABÓLICA blocos formadores para material celular CATABÓLICA combustível energético proteínas musculares e hepáticas
Pepsina DIGESTÃO E ABSORÇÃO Inicia estômago PEPSINA meio ácido PROTEÍNA POLIPEPTÍDEOS ABSORÇÃO dipeptidases e aminotripeptidases jejuno e íleo transporte passivo não existe depósito de aminoácidos proteínas
Destino dos aas na célula • Após absorção os aas caem na corrente sanguínea • Síntese de peptídeos e proteínas • Oxidação para formação de energia • (fígado e músculo)
Biossíntese protêica • Também chamada Tradução • RNAm chega ao citoplasma se associa ao ribossomo; • RNAt levam os aminoácidos, que serão ligados, formando assim a proteína.