1 / 92

THERMAL STABILITY & THE NANO HUTCH

THERMAL STABILITY & THE NANO HUTCH. ISDD - Thermal Stability Working Group R. Baker. THERMAL STABILITY &THE NANO HUTCH. Consequences of thermal instability (reminder) Experimental results (reminder) Design solutions Materials Limits Athermal design Environmental solutions

karlyn
Télécharger la présentation

THERMAL STABILITY & THE NANO HUTCH

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. THERMAL STABILITY&THE NANO HUTCH ISDD - Thermal Stability Working Group R. Baker

  2. THERMAL STABILITY &THE NANO HUTCH • Consequences of thermal instability (reminder) • Experimental results (reminder) • Design solutions • Materials • Limits • Athermal design • Environmental solutions • Experimental hutch evolution • The Nano hutch study • Numerical model of the existing hutch • Improvement studies • The advantages of “phase change materials” • Conclusion & recommendations Thermal Stability & the Nano Hutch – R. Baker – March 2010

  3. 24 Hours +/- 0.5° C Consequences of thermal instability Typical standard ESRF hutch • What are the consequences ? Temperature (°C) Time (hours) Thermal Stability & the Nano Hutch – R. Baker – March 2010

  4. Beam axis (into page) Sample stage 400mm Granite block 1400mm 1000mm Symmetry around beam axis Consequences of thermal instability For 1 K (+/- 0.5K) temperature change: 1000mm of granite ≈ 8.5μm 400mm of steel & aluminium ≈ 8μm TOTAL ≈ 16.5μm Floor Thermal Stability & the Nano Hutch – R. Baker – March 2010

  5. Area Heat capacity Volume Film coefficient Consequences of thermal instability Thermal time constantτ= C.V / h.A Granite Volume ≈ 3 x 106 cm3 Area ≈ 130 x 103 cm2 Mass ≈ 8100 kg • Approximate thermal time constant : • Forced air flow (8m/min): 2 hours • Natural convection: 11 hours Thermal Stability & the Nano Hutch – R. Baker – March 2010

  6. Consequences of thermal instability Typical Sample Mechanics 50 % Aluminium, 50% Steel Approximate thermal time constant : • Forced air flow (8m/min): 40 mins • Natural convection: 3 hours Volume ≈ 20 x 103 cm3 Area ≈ 8 x 103 cm2 Mass ≈ 120 kg Thermal Stability & the Nano Hutch – R. Baker – March 2010

  7. Time constant on components – volume / surface τaV / A Consequences of thermal instability Approx. time constant : • Forced air flow : 40 mins • Natural convection: 3 hours Manufacturing process reduces V and increases A Volume ≈ 1000cm3 Area ≈ 600 cm2 Volume ≈ 282cm3 Area ≈ 1720 cm2 • Approx. time constant : • Forced air flow : 70 secs • Natural convection: 6 mins Thermal Stability & the Nano Hutch – R. Baker – March 2010

  8. +/- 0.1 C 24 Hours 2h 6h +/- 0.35 C +/- 0.5° C Consequences of thermal instability Hutch Sample mechanics Granite • Can cause distortion, compound displacements and unpredictable behaviour. Temperature (°C) Time (hours) Thermal Stability & the Nano Hutch – R. Baker – March 2010

  9. Temp. opto mechanics in box ID22 EH2 Hutch Temperature Experimental results ID22 EH2 Offset time : 3 hours. Opto mechanics is insensitive to high frequency variation in hutch temperature. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  10. Experimental results Hutch Temperature • For 0.5K temperature change : • 15µm vertical beam displacement • Combination of linear and angular drift • Beam position relatively insensitive to high frequency variations in hutch temperature ID23 Vertical beam position Thermal Stability & the Nano Hutch – R. Baker – March 2010

  11. Design Solutions – Choice of materials • Cost ! • Low CTE = poor engineering properties. • “Standard” materials = high CTE. • Incompatibility with commercial products. • Gradients & local heat sources require high diffusivity…. • …..but also a stable environment. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  12. Thermal insulation enclosure Solid invar bars Incidence jack Support Axis Mirror Bender High stability Invar support Design Solutions - Limits Horizontally reflecting KB mirror assembly • Invar where possible • 5 µrad / °C • All Invar except mirror • No microjack or flexible axes • 2.6 µrad / °C Thermal Stability & the Nano Hutch – R. Baker – March 2010 12

  13. Hutch Temperature Material # 1 e.g. Aluminium α = 23 x 10-6 Material # 1 e.g. Steel α = 12 x 10-6 H2 H1 For H Ref constant at Δ T : α M1 x H1 = α M2 x H2 and Reference Position H Ref τMaterial 1≈τMaterial 2 Floor Design Solutions - Athermal Design (simple model) Design solution insensitive to thermal drift using common materials Thermal Stability & the Nano Hutch – R. Baker – March 2010

  14. Motor (heat source) Screw Guide Body Nut Moving tip Original – Stainless Steel body Original – Invar body Athermal design – Stainless Steel body Design Solutions - Athermal Design in practice Possible on simple mechanical assemblies ESRF Microjack Clamp Thermal expansion (µm) with holding current ESRF Microjack µm Time (mins) Thermal Stability & the Nano Hutch – R. Baker – March 2010

  15. Environmental Solutions – Hutch Evolution Non insulated walls & ceiling Thermal leaks Standard air conditionning unit Plain doors – no SAS Standard hutch Principal function : User comfort Thermal Stability & the Nano Hutch – R. Baker – March 2010

  16. Environmental Solutions – Experimental Hutch Evolution Walls lined with laminated chipboard – higher inertia Porous ducts – air renewal rate : 20 vols. / hour SAS Standard hutch Raised floor with multiple extraction grids ID 22 NI Hutch - vast improvement over the standard hutch – thermal stability improved by a factor of 5 Improved higher stability design Thermal Stability & the Nano Hutch – R. Baker – March 2010

  17. Side granite +X, -Y Side granite +Y Side granite -Y Side granite +X, +Y Top granite Above sample in air 4 x PT100’s on KB mechanics Environmental Solutions – Temperatures • 24h cycle = 0.1 – 0.3°C • Gradient = 1°C • 24h cycle still present • Local heat sources ? • Still work to do on local shielding… Thermal Stability & the Nano Hutch – R. Baker – March 2010

  18. The Nano Hutch study – “can we improve on what exists ?” The Nano hutch study - SEMIcad • Expertise in thermal stability & air flow simulation. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  19. The Nano Hutch study • Numerical model of the existing hutch • Data collection • Identified drawbacks • Existing configuration - stationary study • Existing configuration - transient study • Improvement studies • Improved configuration #1 • Comparison existing / improved configuration #1 • Improved configuration #2 • Improved configuration #3 • Improved configuration #4 Thermal Stability & the Nano Hutch – R. Baker – March 2010

  20. Sensor positions Nano Hutch Study – Numerical Model of the Existing Hutch Data collection – thermistors calibrated to +/- 0.005°C against primary standards • 2 x RBR Loggers : • 16 x temperatures • Atmospheric pressure • Human presence • Hutch door state • Lighting state • Hot water valve state • Cold water valve state • Lakeshore logger : • 4 x KB temperatures All data logged to ESRF Historical Database Thermal Stability & the Nano Hutch – R. Baker – March 2010

  21. Electrical power logger Sleeve 1 Sleeve 2 Position Velocity (m/s) Sleeve 1 Velocity (m/s) Sleeve 2 0 à 1 m 0,20 0,15 1 à 2 m 0,45 0,20 2 à 3 m 0,60 0,35 3 à 4 m 0,55 0,27 4 à 5 m 0,65 0,49 5 à 6 m 0,65 0,66 6 à 6,75 m 0,64 0,63 Total (m3/h) 1 800 1 300 3 100 Nano Hutch Study – Numerical Model of the Existing Hutch Data collection – Electrical power & air throughput Thermal Stability & the Nano Hutch – R. Baker – March 2010

  22. Walls in contact with EXPH – 9mm lead, 13mm laminatedchipboard Roof – 9mm lead Walls in contact with EH3 – 12mm lead, 13mm laminated chipboard Walls in contact with SAS – 9mm lead, 13mm laminated chipboard Walls in contact with CC – 9mm lead, 13mm laminated chipboard Hutch door – 9mm lead Nano Hutch Study – Numerical Model of the Existing Hutch Data collection – Definition of thermal properties Thermal Stability & the Nano Hutch – R. Baker – March 2010

  23. Electronics rack Mobile granite KB Monochromator Mobile electrical equipment Mobile equipment Main granite Mobile heat source Shutter Sample granite Nano Hutch Study – Numerical Model of the Existing Hutch Thermal Stability & the Nano Hutch – R. Baker – March 2010 23

  24. Losses through chicanes Position of temperature control sensors Summer / winter temperature stability Numerical model of the existing hutch Identified drawbacks Thermal Stability & the Nano Hutch – R. Baker – March 2010 24

  25. Chicane 1 Chicane 2 Chicane 6 Chicane 3 Chicane 5 Chicane 4 Identified problems – losses through chicanes =35% of total flow Thermal Stability & the Nano Hutch – R. Baker – March 2010 25

  26. New air in from EXPH Identified problems – air conditioning principle (simplified) EXP hall Air conditioning unit Experimental hutch The goal : clean, thermally stable air Losses through chicanes Gradients & thermal instability Sensor unit Raised floor EXPH floor Thermal exchange with EXPH floor Thermal Stability & the Nano Hutch – R. Baker – March 2010 26

  27. 35 EXPH winter temp.+/- 0.5⁰C Outside summer temp.+/- 9⁰C 30 25 20 Temperature (°C) 15 10 5 Outside winter temp.+/- 5⁰C EXPH summer temp.+/- 1.5⁰C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (days) Outside EXPH Winter temp. +/- 0.5⁰C Winter temp.+/- 5⁰C Summer temp.+/- 9⁰C Summer temp. +/- 1.5⁰C Identified problems – Sensitivity of EXPH to outside temp. Summer & winter – 20 days Thermal Stability & the Nano Hutch – R. Baker – March 2010 27

  28. 27 26 25 EXPH summer temp. Temperature (°C) 24 EXPH winter temp. 23 22 21 1 2 3 4 5 6 7 Time (days) Summer temp. amplitude 7 days : 4⁰C Winter temp. amplitude 7 days : 1⁰C Identified problems – Sensitivity of EXPH to outside temp. Summer& winter – 7 days Thermal Stability & the Nano Hutch – R. Baker – March 2010 28

  29. Existing Configuration – Stationary Study Air Speed Vertical section Thermal Stability & the Nano Hutch – R. Baker – March 2010

  30. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  31. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  32. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  33. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  34. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  35. Air speed imbalance Thermal Stability & the Nano Hutch – R. Baker – March 2010

  36. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  37. Almost all new air evacuated directly Thermal Stability & the Nano Hutch – R. Baker – March 2010

  38. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  39. Thermal Stability & the Nano Hutch – R. Baker – March 2010

  40. Existing Configuration – Stationary Study Air Speed Horizontal section Thermal Stability & the Nano Hutch – R. Baker – March 2010

  41. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  42. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  43. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  44. 0 0.5 1 Speed Air deviated by mono Thermal Stability & the Nano Hutch – R. Baker – March 2010

  45. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  46. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  47. 0 0.5 1 Speed Thermal Stability & the Nano Hutch – R. Baker – March 2010

  48. 0 0.5 1 Speed Uncontrolled zone Thermal Stability & the Nano Hutch – R. Baker – March 2010

  49. Existing Configuration – Stationary Study Temperatures Vertical section Thermal Stability & the Nano Hutch – R. Baker – March 2010

  50. Large vertical gradient Thermal Stability & the Nano Hutch – R. Baker – March 2010

More Related