1 / 25

Titanium and titanium alloys

Titanium and titanium alloys. Josef Stráský. Lecture 2: Fundamentals of Ti alloys. Polymorphism Alpha phas e Beta phase Pure titanium Titanium alloys a alloys a + b alloys b alloys Phase transformation β  α w- phase Hardening mechanisms in Ti Hardening of α + β alloys

kasen
Télécharger la présentation

Titanium and titanium alloys

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Titanium and titanium alloys Josef Stráský

  2. Lecture 2: Fundamentals of Ti alloys • Polymorphism • Alpha phase • Beta phase • Pure titanium • Titanium alloys • a alloys • a + b alloys • b alloys • Phasetransformationβ α • w-phase • Hardeningmechanisms in Ti • Hardeningofα+βalloys • Hardeningofmetastableβalloys

  3. Polymorphism • Pure titanium is polymorphic – it exists in more crystallographic structures (phases) • Similarly to iron • Above 882°C the titanium is body-centered cubic material (bcc) – b – phase • Upon cooling below 882°C – (so-called b-transus temperature) – b – phase martensitically transforms to hexagonal close-packed structure - a – phase

  4. Stable phases – pure titanium • b – phase – stable above 882°C (b-transus temperature) • Under room temperature, only a – phase is stable Hexagonal close-packed lattice (hcp) Phase a Body-centered cubic lattice (bcc) Phase b 6 atoms / 0.106 mm3= 56,6 2 atoms / 0.0366mm3= 54,6 This difference allows dilatometry studies.

  5. HCP – hexagonalclosedpacked a - phase Plane - (hkl) Set ofplanes- {hkl} Direction - [UVW] Set ofdirections – <UVW> c/a(Ti) = 1.588 < 1.633 (optimal) c/a(Cd) = 1.886 c/a(Zn) = 1.856 c/a(Mg) = 1.624 c/a(Co) = 1.623 c/a(Zr) = 1.593 Slip systems: Principal: Prismatic {1 0 -1 0} <1 1-2 0> Secondary: Basal {0 0 0 1} <1 1 -1 0> Other: Pyramidal {1 0 -1 1} <1 1 -2 0> and {1 1 -2 2} <1 1 -2 3>

  6. HCP – hexagonalclosedpacked Slip systems Principal: Prismatic {1 0 -1 0} <1 1-2 0> Secondary: Basal {0 0 0 1} <1 1 -1 0> Other: Pyramidal {1 0 -1 1} <1 1 -2 0> and {1 1 -2 2} <1 1 -2 3>

  7. The effect of alloying elements on phase composition • Alloying elements affect the beta-transus temperature • a – stabilizing elements – increase beta-transus temperature • b – stabilizing elements – increase beta-transus temperature • Isomorphous – completely soluble in solid solution • Eutectoid – intermetallic particles are created • - stabilizing • (eutectoid) • - stabilizing • (izomorphous) a - stabilizing Neutral

  8. Theeffectofalloyingelements on phasecomposition • Neutralelements– Zr, Sn • a- stabilizingelements – Al, O, N, C • b - stabilizingelements– isomorphous – Mo, V, Ta, Nb • b - stabilizingelements – eutectoid– Fe, Mn, Cr, Co, Ni, Cu, H • - stabilizing • (eutectoid) • - stabilizing • (isomophous) a - stabilizing Neutral

  9. Titaniumalloys • Pure Ti atroomtemperature onlya – phase • Low-contentofb-stabilizingelements (and/oroutweighted by a -stabilizingelements)  onlya – phaseisstableat RT  so-calleda – alloys • Increasedcontentofb-stabilizingelements • b - phasebecomesstableatroom-temperature • a + b alloys

  10. Titaniumalloys • Furtherincreasedcontentofb-stabilizingelements • Thetemperature „martenzite start“ ofphasetransitionb  aisdecreasedbelowroomtemperature • Phasea is not formedduringquenching • Metastableb-alloys  Duringannealingbelowb-transustemperature, theaphaseiscreateduntilthe balance compositionisachieved

  11. Titaniumalloys • Even more increasedcontentofb-stabilizingelements • Beta transustemperaturecanbedecreasedbelow RT • Afer cooling to roomtemperature, b phaseremainstable • Stableb-alloys

  12. Molybdenumequivalence • Mo: oneofthe most importantb – stabilizingelements • Comparisonofb– stabilizingeffectofdifferentelements  so-calledmolybdenumequivalence • [Mo]eq= [Mo] + 0,67 [V] + 0,44 [W] + 0,28 [Nb] + 0,22 [Ta] + + 2,9 [Fe] +1,6 [Cr] + 1,25 [Ni] + 1,7 [Mn] + 1,7 [Co] -1,0 [Al] • i.e. Vanadium contentmustbe 1.5 timeshigherthenMolybdenum to achievethesameeffect on stability of beta phase • i.e. Iron isthreetimesstronger beta stabilizerthanMo a 4x than V • Molybdenumequivalenceisonlyempirical rule based on analysisofbinaryalloys • Molybdenumequivalencecannotbeusedquantitatively to compute beta transustemperatureorequilibriumphasecomposition • Especially in the case ofternary and more complicatedalloys

  13. Aluminium equivalence • Lessused analogy ofmolybdenumequivalencefora - stabilizers • Al: oneofthe most important a – stabilizingelements[Al]eq = [Al] + 0,33 [Sn] + 0,17 [Zr] + 10 [O + C +2N] • In the case that Al equivalenceishigherthanapprox 9% (somesourcessay 5%), then Ti3X intermetalicparticles are formed • TheeffectofZrremainsunknown and dependsstrongly on thecontentofotheralloyingelements

  14. Phasetransformationb a • Occurs below b-transus temperature • In pure Ti, a-alloys and a + b alloys •  martensitic transformation • But not until equilibrium phase composition • Followed by growth of particles (lamellae) • In metastable b-alloys • Precipitation of a-particles • Homogeneous precipitation • Heterogeneous precipitation • Grain boundaries • Particles of other phases • Chemical inhomogeneities

  15. Phasetransformations in metastableballoys • Phaseseparation: b blean + brichtakéb b´ + b • Occurs in stronglystabilizedb-alloys • b-stabilizationelementsformclusters via spinodaldecomposition  brichregions • Formationofw-phase • Lessstabilizedb-alloys • Formationofparticlesw • Smallcoherentparticles, size: 1-20 nm • Precipitationofa-phase • fromw-phase • Smallwphaseparticles serve as precursorsofa phaseprecipitation •  precipitatesofaphase are tiny and homogeneouslydistrbiuted •  significantstrengthening

  16. w-phase • Hexagonal (but not hcp) phase • Nanometersizedparticles • Createdafterquenching (w-athermal) • Growduringageing Transmissionelectronmicroscopy Devaraj et al., Acta Mat 2012 Ti-9Mo a,b) – quenchedfromb; c)-e) – 475°C/30 mins; f)-h) - 475°C/48 h

  17. bwaphasetransformations • Volume fraction of phases in Ti-LCB alloy studied by X-ray diffraction • b+wtransforms to a with increasing ageing temperature and ageing time (isothermal annealing) Ageingat 450°C Ageingat400°C Smilauerova et al., unpublishedresearch

  18. bwaphasetransformations • Identified by in-situmethods • Differentialscanningcalorimetry • Measurementsofelectricalresistivity • bwatransformationsidentifiedduringheating 5°C/min Dissolutionofathermalwphase, reversiblediffusionlessprocess Stabilization and growthofisothermalwphase – diffuseprodcess Dissolutionofwphase Precipitationofa phase Dissolutionofa phase Aboveb-transustemperature – b phase

  19. w observed by 3D atom probe • Observationisbased on chemicaldifferences Deveraj et al., Scripta Mat 61 (2009)

  20. HardeningofTitanium • Inerstitial oxygen atoms • If oxygen content in pure Ti isincreasedfrom 0.18 to 0.4 wt. %  •  thestrengthisincreasedfrom 180 MPa to 480 MPa (!) • Typical oxygen content in commercial Ti alloysis 0.08 – 0.20 hm. % • Higher oxygen contentoftencausesembrittelment • Positionsof oxygen atoms are correlated to vacancies • positron annihilationspectroscopy study • Solid solutionstrengthening • a-stabilizingsubstitutionalelements (Al, Sn) strengthena-phase (Ti-5Al-2.5Sn  800 MPa) • Somefullysolubleb-stabilizingelementsstrengthenb-phase (Mo, Fe, Ta), othershavenegligibleeffect (Nb) • Sizeoftheatoms and electronstructureisdecisiveforthiseffect • Someatoms serve as obstaclesfordislocationmotion

  21. Hardening of Titanium 3. Intermetallic particles (precipitation hardening) • Eg. Aluminides nitrides, carbides, silicide – and many others • Size of the particles and their distribution are crucial for the strengthening effect (Orowan strengthening) 4. Dislocation density and grain refinement • Forming/working (e.g. extrusion, forging, etc.) can increase dislocation density and cause grain refinement • Dislocations cause obstacles to movement of other dislocations causing increase strength • Grain and sub-grain boundaries may also act as dislocation obstacles • Working must be done at sufficiently low temperatures to suppress extensive grain growth and dislocation annihilation

  22. Hardening of a+balloys • Sufficient content of Al (or Sn) leads to formation of Ti3Al particles (when content of Al is above 9 wt. %) • Solvus of Ti3Al particles is approx. 550°C, final annealing temperature must be below this temperature • Ti3Al particles are hexagonal and coherent and block the dislocation movement causing precipitation hardening • In a + b alloys occurs separation of elements during annealing – a-stabilizers diffuse to a-phase, whereas b–stabilizers diffuse to b-phase • Intermetallic particles (Ti3Al) can be created in a-phase due to sufficient amount of a-stabilizer despite overall (average) chemical composition doesnot allow such precipitation • Phase boundaries serve as dislocation motion obstacles • The smaller are morphological features of respective phases, the bigger is strengthening effect

  23. Hardeningofmetastableb-alloys • Interstitial, solid solution and dislocationdensitystrengthening • Precipitationhardening/phaseboundaryhardeningcaused by phasetransformationofb-matrix • Phaseseparation – blean+ brich • Formationofw-phaseparticles • Precipitationofa-phaseparticles

  24. Lecture 2: Conclusion • Titaniumispolymorphousmaterial – twostablephases • a-phase– hexagonalclose-packed (hcp) • b-phase– body-centeredcubic (bcc) • Belowb-transustemperature- aphaseisformed • Pure Ti – atroomtemperatureonlya-phase • a + b alloys • At roomtemperature mix ofphasesa + b • a phaseformationcannotbesuppressed • Metastableb-alloys • Afterquenching - onlyb-phase • Uponannealinga-phaseisformed • b atransformation • Martensiticfollowed by growth (a + b alloys) • Precipitationfollowed by growth (balloys) • wphase • Nano-sizedparticles, precursorfora-phaseparticlesprecipitation • Hardeningof Ti and Ti alloys • Pure ti ishardenendmainly by oxygen content • Alloys are hardened by solid solutionstrengthening, intermetalicparticles and particlesofotherphases

  25. Titanium and titanium alloys Josef Stráský Thankyou! Project FRVŠ 559/2013 is gratefully acknowledged for providing financial support.

More Related