1 / 44

Born Oppenheimer Näherung

Born Oppenheimer Näherung. r e. Kernwellenfunktion. Elektronische Wellenfunktion R nur Parameter. Näherung: Harmonischer Oszillator. Potential Wie sieht die Wellenfunktion dazu aus?. R pp (Kernabstand). Measure the internuclear distance: Reflection Approximation. harmonic

kaya
Télécharger la présentation

Born Oppenheimer Näherung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Born Oppenheimer Näherung re Kernwellenfunktion Elektronische Wellenfunktion R nur Parameter Näherung: Harmonischer Oszillator Potential Wie sieht die Wellenfunktion dazu aus? Rpp(Kernabstand)

  2. Measure the internuclear distance: Reflection Approximation harmonic oszillator Morse Potential

  3. h E CO+(C1s) 300meV 1.08Å CO 1.13 Å Elektronenenergie

  4. Molecular Innershell Photoionization – fixed in space molecules Polarization e- from K-shell, 10eV Energy O h = 295 eV C O C molecular orientation measurement

  5. Molecular Innershell Photoionization – fixed in space molecules Photoelectron (10eV) h = 295 eV Auger Electron 250 eV + + + + O O O O C C C C CO2+ CO2+

  6. h Polarization He + 99eV -> He1+(1S) + e- C O Interference between different classical paths (diffraction pattern)

  7. h Polarization He + 99eV -> He1+(1S) + e- h = 295 eV + C O Interference between different classical paths (diffraction pattern) L = 1(within dipole approximation) Entangled Stateof rotating Moleculeand Electron

  8. h h C C O O

  9. h h C C O O

  10. Chirality in Nonmagnetic Systems? Chiral many body, intial states oriented molecules initial state final state Theoretical Prediction: Dubs, McCoy PRL 45 (1985) Pioneering Experiment: Circular Dichroism CO on surface Schönhense et al

  11. Circular light measures PHASE SHIFTS (parallel/perp) Circular Dichroism from Aligned Molecules? 9 eV K-Shell N2 Jahnke et al, PRL 88(2002)073002

  12. Zwischen Atomen und Molekülen: van der Vaals Cluster

  13. Inter Atomic Coulombic Decay • Wie können Atome innere Energie abgeben? • Beeinflußt die Umgebung die Eigenschaften des Atoms?

  14. Decay processes of electronically excited particles: Pierre Auger 1925 Flourescence decay Auger decay 2s2p Energy 2s2p Energy 1s1s 1s1s

  15. Decay processes of electronically excited particles: Flourescence decay Auger decay Inter Atomic Coulombic Decay (ICD) (L. Cederbaum et al. PRL 79,4778(1997) ICD electron from neighbor atom energy transfer virtual photon exchange

  16. van der Vaals Cluster Where? Hydrogen bonded systems Liquids

  17. 3.1 A Neon - Dimer Binding energy Ne2 1.5 meV van der Vaals Force

  18. Ne+ Ne Auger decay energetically forbidden from Ne+(2s-1) - 11eV 2p 2p 2s 2s energy transfer virtual photon exchange 1s 1s Neon - Dimer 3.1 A

  19. Ne+ Ne+

  20. Ne+ Ne+ single photon below Ne2+ threshold Till Jahnke, et al. PRL 93, 163401 (2004)

  21. 2s Photoelectron electron energy (eV) 5eV Energy of Ne2(2s-1) Ne+ Ne+ Ne+ Ne+ Kinetic Energy Release (eV) ICD electron

  22. Photo- electron 10eV Ne2(2s-1)+ ICD e- KER Ne+ Ne+ h=59 eV Ne+ Ne+ Ne2 Santra et al. PRL 85, 4490-4493 (2000)

  23. Photo- electron 10eV Ne2(2s-1)+ ICD e- KER electron energy (eV) Ne+ Ne+ h=59 eV Ne+ Ne+ Kinetic Energy Release (eV) Ne2

  24. Santra et al PRL 85,4490(2000) ICD Ne+ Ne+ electron energy (eV) Ne+ Ne+ Kinetic Energy Release (eV) Ne2+(2s-1) Photo-e- ICD-e- KER

  25. monochromatic light e- e- e- e- 1899 J.J. Thomson 1900 Elster & Gütel 1900 Lenard A - I high intensity max. electron energy independent of intensity low intensity - 0 + Potential

  26. Energy 0 “BIG Photon” E>Ebind 24.6 eV + 54.4 eV 79 eV

  27. Energy 0 24.6 eV + 54.4 eV 79 eV “Small Photon” 1.5eV (800nm)

  28. Energy 0 24.6 eV + 54.4 eV 79 eV 53 photons @800 nm 1015 W/cm2

  29. Viele interessante Fragen: • Extrem nichtlineare Prozesse von Störungstheorie • (Elektronische)Materie unter extremen Bedingungen • Extrem kurz Zeiten “Attosekunden” “Elektronenbewegung sichbar machen”

  30. Räumliche Kompression: 5 cm Brenweite: 5mm -> 5 um focus Faktor 106 Zeitliche Kompression: 1kHz, 220 fsec (10-15) Faktor 1010 50 um 100um 5um Ziel: 1015 W/cm2 ????? Laser: 1 W, 800nm

  31. Lichtgeschosse: • 3*3*3 m3 • 30 ... 6 femto Sekunden • Lichtgeschwindigkeit • Leistungsdichte 1016W/cm2 • 0.2 milli Joule • 1.25 106 GeV • 2*1015 Photonen (a 1.5 eV) • Elektrische Felder > 1011 V/m Photo: S.Voss

More Related