480 likes | 704 Vues
Born Oppenheimer Näherung. r e. Kernwellenfunktion. Elektronische Wellenfunktion R nur Parameter. Näherung: Harmonischer Oszillator. Potential Wie sieht die Wellenfunktion dazu aus?. R pp (Kernabstand). Measure the internuclear distance: Reflection Approximation. harmonic
E N D
Born Oppenheimer Näherung re Kernwellenfunktion Elektronische Wellenfunktion R nur Parameter Näherung: Harmonischer Oszillator Potential Wie sieht die Wellenfunktion dazu aus? Rpp(Kernabstand)
Measure the internuclear distance: Reflection Approximation harmonic oszillator Morse Potential
h E CO+(C1s) 300meV 1.08Å CO 1.13 Å Elektronenenergie
Molecular Innershell Photoionization – fixed in space molecules Polarization e- from K-shell, 10eV Energy O h = 295 eV C O C molecular orientation measurement
Molecular Innershell Photoionization – fixed in space molecules Photoelectron (10eV) h = 295 eV Auger Electron 250 eV + + + + O O O O C C C C CO2+ CO2+
h Polarization He + 99eV -> He1+(1S) + e- C O Interference between different classical paths (diffraction pattern)
h Polarization He + 99eV -> He1+(1S) + e- h = 295 eV + C O Interference between different classical paths (diffraction pattern) L = 1(within dipole approximation) Entangled Stateof rotating Moleculeand Electron
h h C C O O
h h C C O O
Chirality in Nonmagnetic Systems? Chiral many body, intial states oriented molecules initial state final state Theoretical Prediction: Dubs, McCoy PRL 45 (1985) Pioneering Experiment: Circular Dichroism CO on surface Schönhense et al
Circular light measures PHASE SHIFTS (parallel/perp) Circular Dichroism from Aligned Molecules? 9 eV K-Shell N2 Jahnke et al, PRL 88(2002)073002
Zwischen Atomen und Molekülen: van der Vaals Cluster
Inter Atomic Coulombic Decay • Wie können Atome innere Energie abgeben? • Beeinflußt die Umgebung die Eigenschaften des Atoms?
Decay processes of electronically excited particles: Pierre Auger 1925 Flourescence decay Auger decay 2s2p Energy 2s2p Energy 1s1s 1s1s
Decay processes of electronically excited particles: Flourescence decay Auger decay Inter Atomic Coulombic Decay (ICD) (L. Cederbaum et al. PRL 79,4778(1997) ICD electron from neighbor atom energy transfer virtual photon exchange
van der Vaals Cluster Where? Hydrogen bonded systems Liquids
3.1 A Neon - Dimer Binding energy Ne2 1.5 meV van der Vaals Force
Ne+ Ne Auger decay energetically forbidden from Ne+(2s-1) - 11eV 2p 2p 2s 2s energy transfer virtual photon exchange 1s 1s Neon - Dimer 3.1 A
Ne+ Ne+
Ne+ Ne+ single photon below Ne2+ threshold Till Jahnke, et al. PRL 93, 163401 (2004)
2s Photoelectron electron energy (eV) 5eV Energy of Ne2(2s-1) Ne+ Ne+ Ne+ Ne+ Kinetic Energy Release (eV) ICD electron
Photo- electron 10eV Ne2(2s-1)+ ICD e- KER Ne+ Ne+ h=59 eV Ne+ Ne+ Ne2 Santra et al. PRL 85, 4490-4493 (2000)
Photo- electron 10eV Ne2(2s-1)+ ICD e- KER electron energy (eV) Ne+ Ne+ h=59 eV Ne+ Ne+ Kinetic Energy Release (eV) Ne2
Santra et al PRL 85,4490(2000) ICD Ne+ Ne+ electron energy (eV) Ne+ Ne+ Kinetic Energy Release (eV) Ne2+(2s-1) Photo-e- ICD-e- KER
monochromatic light e- e- e- e- 1899 J.J. Thomson 1900 Elster & Gütel 1900 Lenard A - I high intensity max. electron energy independent of intensity low intensity - 0 + Potential
Energy 0 “BIG Photon” E>Ebind 24.6 eV + 54.4 eV 79 eV
Energy 0 24.6 eV + 54.4 eV 79 eV “Small Photon” 1.5eV (800nm)
Energy 0 24.6 eV + 54.4 eV 79 eV 53 photons @800 nm 1015 W/cm2
Viele interessante Fragen: • Extrem nichtlineare Prozesse von Störungstheorie • (Elektronische)Materie unter extremen Bedingungen • Extrem kurz Zeiten “Attosekunden” “Elektronenbewegung sichbar machen”
Räumliche Kompression: 5 cm Brenweite: 5mm -> 5 um focus Faktor 106 Zeitliche Kompression: 1kHz, 220 fsec (10-15) Faktor 1010 50 um 100um 5um Ziel: 1015 W/cm2 ????? Laser: 1 W, 800nm
Lichtgeschosse: • 3*3*3 m3 • 30 ... 6 femto Sekunden • Lichtgeschwindigkeit • Leistungsdichte 1016W/cm2 • 0.2 milli Joule • 1.25 106 GeV • 2*1015 Photonen (a 1.5 eV) • Elektrische Felder > 1011 V/m Photo: S.Voss