1 / 24

Programming with Lists

Programming with Lists. Lists. a is a type ----------- a list is a type (* Homogeneous lists. *) E.g., (true, [ fn i:int => "i"]) : bool * (int -> string) list . E.g., [1, 2 , 3], 1::2::3::[] : int list; E.g., (op ::) : ’a * ’a list ->’a list;

keegan
Télécharger la présentation

Programming with Lists

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Programming with Lists L5lists

  2. Lists a is a type ----------- alist is a type (* Homogeneous lists. *) • E.g., (true, [fn i:int => "i"]) : bool * (int -> string) list. • E.g., [1, 2 , 3], 1::2::3::[] : int list; • E.g., (op ::) : ’a * ’a list ->’a list; • List constructors [] and :: can be used in patterns. L5lists

  3. Built-in operations on lists hd : ’a list -> ’a tl : ’a list -> ’a list null: ’a list -> bool op @ : ’a list * ’a list -> ’a list (* append operation; infix operator *) length : ’a list -> int (* sets vs lists -- multiplicity; ordering *) L5lists

  4. Catalog of List functions init [1,2,3] = [1,2] last [1,2,3] = 3 • Specs: init (xs @ [x]) = xs last (xs @ [x]) = x • Definitions: fun init (x::[]) = [] | init (x::xs) = x :: init xs; fun last (x::[]) = x | last (x::xs) = last xs; L5lists

  5. take 3 [1,2,3,4] = [1,2,3] drop 2 [1,2,3] = [3] • Definition: fun take 0 xs = [] | take n [] = [] | take n (x::xs) = x::take (n-1) xs; fun drop 0 xs = xs | drop n [] = [] | drop n (x::xs) = drop (n-1) xs; L5lists

  6. takewhile even [2,4,1,6,2] = [2,4] dropwhile even [2,3,8] = [3,8] • Definition: fun takewhile p [] = [] | takewhile p (x::xs) = if p x then x :: takewhile p xs else []; fun dropwhile p [] = [] | dropwhile p (x::xs) = if p x then dropwhile p xs else x::xs; L5lists

  7. Role of patterns • For testing type (“discrimination”) • For picking sub-expressions apart • Signatures take, drop : int -> ’a list -> ’a list takewhile, dropwhile : (’a -> bool) -> ’a list -> ’a list List.take, List.drop : ’a list * int -> ’a list L5lists

  8. Selectors #i (a1,…, ai, …, an) = ai nth ([a0,…,ai,…,an],i) = ai • Type of #i cannot be described in ML. List.nth : ’a list * int -> ’a fun nth (x::xs, 0) = x | nth (x::xs, i) = nth (xs, i-1) (* Patterns not exhaustive. Exception raised for null list input. *) L5lists

  9. fun filter p [] = [] | filter p (x::xs) = if p x then x::filter p xs else filter p xs filter : (’a -> bool) -> ’a list -> ’a list L5lists

  10. fun exists p [] = false | exists p (x::xs) = (p x) orelse (exists p xs) exists : (’a -> bool) -> ’a list -> bool fun all p [] = true | all p (x::xs) = (p x) andalso (all p xs) all : (’a -> bool) -> ’a list -> bool L5lists

  11. fun pair [] ys = [] | pair (x::xs) [] = [] | pair (x::xs) (y::ys) = (x,y) :: pair xs ys ; pair: ’a list -> ’b list ->(’a * ’b) list exception error; fun zip f (x::xs) (y::ys) = (f x y) :: zip f xs ys | zip f [] [] = [] | zip f xs ys = raise error; zip : (’a -> ’b -> ’c ) -> ’a list -> ’b list -> ’c list L5lists

  12. Module List - open List; opening List datatype 'a list = :: of 'a * 'a list | nil exception Empty val null : 'a list -> bool val hd : 'a list -> 'a val tl : 'a list -> 'a list val last : 'a list -> 'a val getItem : 'a list -> ('a * 'a list) option val nth : 'a list * int -> 'a val take : 'a list * int -> 'a list val drop : 'a list * int -> 'a list val length : 'a list -> int val rev : 'a list -> 'a list … L5lists

  13. val @ : 'a list * 'a list -> 'a list val concat : 'a list list -> 'a list val revAppend : 'a list * 'a list -> 'a list val app : ('a -> unit) -> 'a list -> unit val map : ('a -> 'b) -> 'a list -> 'b list val mapPartial : ('a -> 'b option) -> 'a list -> 'b list val find : ('a -> bool) -> 'a list -> 'a option val filter : ('a -> bool) -> 'a list -> 'a list val partition : ('a -> bool) -> 'a list -> 'a list * 'a list val foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b val foldl : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b val exists : ('a -> bool) -> 'a list -> bool val all : ('a -> bool) -> 'a list -> bool val tabulate : int * (int -> 'a) -> 'a list - … L5lists

  14. Properties of functions • Semantic Equivalence • Efficiency Transformations • Formal verification ; Debugging tool map f (map g x) = map (f o g) x all p (filter p x) = true (map f) o (filter (p o f)) = (filter p) o (map f) L5lists

  15. Modular Designs using Lists Abstraction and Reuse Ref: Structure and Interpretation of Computer Programs (Abelson and Sussman) L5lists

  16. (define (sum-odd-squares tree) (cond ((null? tree) 0) ((pair? tree) (+ (sum-odd-squares (car tree)) (sum-odd-squares (cdr tree)) ) ) (else (if (odd? tree) (* tree tree) 0)) )) • Takes a tree and computes the sum of the squares of the leaves that are odd. L5lists

  17. (define (even-fibs n) (define (next k) (if (> k n) ’( ) (let ((f (fib k)) (if (even? f) (cons f (next (+ k 1))) (next (+ k 1)) )) )) (next 0)) • Takes a number n and constructs a list of even numbers from among the first n Fibonacci numbers. L5lists

  18. enumerates the leaves of a tree filters them, selecting the odd ones squares each of the selected ones accumulates the results using +, starting with 0 enumerates the integers from 0 to n computes the Fibonacci number for each integer filters them, selecting the even ones accumulates the results using cons, starting with () Abstract Descriptions L5lists

  19. (define (filter pred seq) (cond ((null? seq) ( )) ((pred (car seq)) (cons (car seq) (filter pred (cdr seq)))) (else (filter pred (cdr seq))) )) (define (accumulate op init seq) (if (null? seq) init (op (car seq) (accumulate op init (cdr seq))) )) L5lists

  20. (define (enum-interval low high) (if (> low high) ( ) (cons low (enum-interval (+ low 1) high)) )) (define (enum-tree tree) (if ((null? tree) ( )) ((pair? tree) (append (enum-tree (car tree)) (enum-tree (cdr tree)) )) (else (list tree)))) L5lists

  21. (define (sum-odd-squares tree) (accumulate + 0 (map (lambda (x) (* x x)) (filter odd? (enum-tree tree))))) (define (even-fibs n) (accumulate cons nil (filter even? (map fib (enum-interval 0 n))))) L5lists

  22. Generality (define (list-fib-squares n) (map square (map fib (enum-interval 0 n) )) ) (define (highest-salary-of-programmer records) (accumulate max 0 (map salary (filter programmer? records)))) L5lists

  23. Inefficiencies • Find the fifth prime in the interval 100 to 1000 (caddddr (filter prime? (enum-interval 100 1000)) • Sum all primes between x and y (define (sum-prime x y) (accumulate + 0 (filter prime? (enum-interval x y)))) L5lists

  24. Rewrite (define (sum-prime x y) (define (iter count accum) (if (> count y) accum (if (prime? count) (iter (+ 1 count) (+ accum count)) (iter (+ 1 count) accum) ))) (iter x 0)) L5lists

More Related