1 / 14

October/November 2006, Huenfeld

Nitride chemistry of geomaterials Earlier findings, perspectives and new results Prof. Dr. Rainer Niewa, TU München PD Dr. Ulrich Schwarz, MPI Dresden. October/November 2006, Huenfeld. Outline. • Earlier findings Perowskites ( RE 3 X ) A

kenley
Télécharger la présentation

October/November 2006, Huenfeld

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nitride chemistry of geomaterials Earlier findings, perspectives and new results Prof. Dr. Rainer Niewa, TU München PD Dr. Ulrich Schwarz, MPI Dresden October/November 2006, Huenfeld

  2. Outline • Earlier findings Perowskites (RE3X)A RE = f-metal; X = N, C, O, ; A = d-metal • Target compounds • Systems Fe-N-C; Fe-N-C-O (meteorites, terrestrial minerals) • New ternary iron nitrides (potential materials) • First results: hp-Cu3N Max-Planck-Institut für Chemische Physik fester Stoffe

  3. Techniques • In-situ hp x-ray diffraction (ESRF, M. Hanfland) Laser heating (ESRF) • In-situ hp neutron diffraction (ISIS, M. Tucker,  FRM-II, Garching) • In-situ hp XAS (DESY) • Multianvil set-up + press • Chemical analysis • Metallography Max-Planck-Institut für Chemische Physik fester Stoffe

  4. Rare-earth perovskites (RE3N)M at high pressures B0 = 107(6) GPa • Low-pressure range B0 > 80 GPa • High-pressure range (Ce3N)In B0 ~ 40 GPa Valence change? B0 = 85(3) GPa B0 = 88(8) GPa B0 = 43(1) GPa Max-Planck-Institut für Chemische Physik fester Stoffe

  5. Pressure (GPa) 12.7 10.0 8.0 6.8 CeO2 (reference) XAS of (Ce3N)In • Ce LIII threshold • P > PT Constant signal of Ce3+ (4f1)  No evidence for a valence change Max-Planck-Institut für Chemische Physik fester Stoffe

  6. Relevance of iron nitrides Max-Planck-Institut für Chemische Physik fester Stoffe

  7. Relevance of binary iron nitrides • Fe4N • Fe(Fe3N) perovskite-type at ambient conditions • Mineral roaldite in the impact zone of meteorites • Relevance for the earth’s core? • Formation conditions unknown • Hexagonal high-pressure phase at P > 32 GPa [Adler, Williams, J. Geophys. Res. 110 (2005) 1203] • “Fe5N2” (Fe3N1+x) Aetna: Silvestrite [A. Silvestri, Pogg. Ann. 157 (1867) 165]  2 of 8 known nitride minerals are iron compounds • Hard materials – Surface hardening • Spinell-type hp-Fe3N4 predicted, B0 = 304 GPa [Xu, Ruhs, Ching, J. Appl. Phys. 91 (2002) 7352] Max-Planck-Institut für Chemische Physik fester Stoffe

  8. Ternary iron nitrides • Ternary nitrides ambient pressure (predicted and synthesized): (Fe3N)Rh [Appen, Dronskowski, Angew. Chem. 117 (2005) 1230] [Houben, Müller, Appen, Lueken, Niewa, Dronskowski, Angew. Chem. 117 (2005) 7379] high-pressure (predicted) P > 37 GPa: (Fe3N)Ir [Appen, Dronskowski, Angew. Chem. 117 (2005) 1230] • Homogeneity range of phases • Substitution of N by O and C • Characterization of the samples Chemical composition Physical properties Max-Planck-Institut für Chemische Physik fester Stoffe

  9. Copper nitride Cu3N: Crystal structure and phase transitition • Ambient pressure d(Cu-N) 191 pm CN(Cu) 6 CN(N) 2 • Predicted high-p phases Li3P, -UO3 or K3N, P > 25 GPa [Cancarevic, Schön, Jansen ZAAC 631 (2005) 1167] • HP-synthesis of a quenchable phase failed (P 8 - 10 GPa) lp-Cu3N, Cu ReO3 type Max-Planck-Institut für Chemische Physik fester Stoffe

  10. Cu3N • In-situ x-ray increasing pressure PT > 7 GPa • PT reversible with hysteresis •Cu subcell I4/mmm Cu 0,0,0 c/a ~ 1.47  In partial-structure Max-Planck-Institut für Chemische Physik fester Stoffe

  11. Cu3N: TOF Neutron diffraction data Four phases •Cu3N • Pb pressure marker • WC anvil • Ni crucible Scattering factors b(Cu) = 7.9  fm b(N) = 9.4  fm Cu3N Cu3N Cu3N Pb/WC Ni Pb WC 10 to 25 to 40 to 55 to 70 to 85 to Max-Planck-Institut für Chemische Physik fester Stoffe

  12. Structure refinement of hp-Cu3N + Pb, Ni, WC f = 85 to Non-linear background No indication for symmetry reduction with respect to X-ray data Max-Planck-Institut für Chemische Physik fester Stoffe

  13. Hp-Cu3N: structure model (L. Akselrud, MPI CPfS) I4/mmm (sg 139) a = 265.3 pm c = 390.8 pm c/a = 1.473 Cu (0,0,0) N (1/2, 1/2, 0) SOF(N)= 0.37(2)  Cu3N1.1(1) d(Cu-N) = 187.6(1) pm [4/3 ] d(Cu-N) = 195.4(1) pm [2/3 ] Cu 1/3 N Max-Planck-Institut für Chemische Physik fester Stoffe

  14. Summary Hp phase of Cu3N In-situ: nitrogen-disordered I4/mmm Quenching not successful Outlook Preparation in Systems Fe-N-C; Fe-N-C-O Preparation of (predicted) ternary iron nitrides (Cooperation Prof. Dronskowski) Mechanical properties (Cooperation Prof. Riedel) Crystal growth (Cooperation Dr. Gross) Max-Planck-Institut für Chemische Physik fester Stoffe

More Related