210 likes | 312 Vues
Availability of High-Tech Metals - New Developments in Research, Exploration and the Raw Materials Markets. 5. Astana Mining and Metallurgy Congress AMM, Astana,12.-13. June 2014 Volker Steinbach Federal Institute for Geosciences and Natural Resources (BGR), Germany.
E N D
Availabilityof High-Tech Metals - New Developments in Research, Exploration andtheRaw Materials Markets 5. Astana Mining andMetallurgyCongressAMM, Astana,12.-13. June 2014Volker SteinbachFederal Institute forGeosciencesand Natural Resources (BGR), Germany
Market penetration times on the US market source: (Berner 2000)
Global Raw Materials Demand for Future Technologies 2006 and 2030 Relation between recent worldwide production and the demand for future technologies Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009) * BGR counted by new data Foto: Zeiss Foto: DG-Solartechnik Foto: PerkinElmer Optoelectronics Foto: Voith AG
Global Raw Materials Demand for Future Technologies 2006 and 2030 Relation between recent worldwide production and the demand for future technologies Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009) * BGR counted by new data Foto: Zeiss Foto: DG-Solartechnik Foto: PerkinElmer Optoelectronics Foto: Voith AG
Global Raw Materials Demand for Future Technologies 2006 and 2030 Relation between recent worldwide production and the demand for future technologies Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009) * BGR counted by new data Foto: Zeiss Foto: DG-Solartechnik Foto: PerkinElmer Optoelectronics Foto: Voith AG
Global Raw Materials Demand for Future Technologies 2006 and 2030 Relation between recent worldwide production and the demand for future technologies Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009) * BGR counted by new data Foto: Zeiss Foto: DG-Solartechnik Foto: PerkinElmer Optoelectronics Foto: Voith AG
Global Raw Materials Demand for Future Technologies 2006 and 2030 Relation between recent worldwide production and the demand for future technologies Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009) * BGR counted by new data Foto: Zeiss Foto: DG-Solartechnik Foto: PerkinElmer Optoelectronics Foto: Voith AG
The MetalWheel: after Reuter et al. andVerhoef et al. Al Mn Ti Zn Cr V Cu Mn Cu Ti Fe As Mg Major metals Li Mg Ni Cr Sn As Pb B Ni V Br Ga Co Fe oxide ore Mn Cu Al Al Zn Ca/Si Cl Fe Pb Sn Mg Fe V Al Al By products Fe Fe Mn Mg Cr Al Nb PGM Withspecial infrastructure V Zr Mg Cr Ti Ta Mn Ca/Si Sn Zn Zn W Ga Mg Ag Au As In Limited infrastructure Cu Ge Mn Ni Sb Bi Pb Ag In Fe Nb Pb Cu Cd Cu Pt Ag Ta Se Au Cu Ir Ag Zn Co Mg Noinfrastructure → tailings Ru Pb Te Hg Au Mo Fe As Rh Sb Co Sb sulfide and oxide ore Pd Te Bi Os Pt Os Cr Ru Hg Ti Ni Rh Se sulfide ore As As Ir Co Bi Ca/Si Ca/Si Fe Sb Ca/Si Hg
Germanium: Global demand for high-tech applications in 2030 compared to the production in 2006 German-info.com Foto: Zeiss
“Big Hill“ of Lubumbashi, DRC: a possible source of germanium Potential > 2,250 t Ge ~ 20 yearsofworldsupply ! STL plant (since 2000) 55 % OM Group (U.S. - Finland) 25 % Groupe Forrest (Congo D.R.) 20 % Gécamines (Congo D.R.) Production: 4,000 t Co, 2,500 t Cu, 15,000 t Zn a few tons of Ge p.a. (?) 15 Mt slags from 80 years of production (KipushiGe-rich Zn-Cu ore plus stratiform Cu-Co ores) Core: 0.4 % Co, 12.5 % Zn, 1.3 % Cu, 250 ppmGe Margin: 1.2 % Co, 12 % Zn, 2 % Cu, 100 ppmGe
The Eastern Asian Germanium-rich Coal Province Position of the largest Ge–coal deposits of the World. 1 — Novikovsk 2 — Bikinsk 3 — Pavlovsk 4 — Shkotovsk 5 — Lincang 6 — Wulantuga 7 — Wumuchang (Seredin & Finkelman, 2008, Int J Coal Geol) 4000 t 30-50 g/t 1665 t 700 g/t 2600 t 300 g/t 1015 t 450 g/t 1600 t 270 g/t 880 t 1043 g/t 13,000 t Ge reserves in 7 coalfields 1060 t 850 ppm
Germanium: Recycling • Little recycling from postconsumer scrap • 25-35% of total Ge used from recycled scrap • Infrared optics: 30% production from recycled material • Fibre optics: 60% recycled material; recovery from fibres 80%; 0.3-1 g GeO2 per km cable • Electronics, solar: 50% waste accumulation, recycled • Polymerization catalysts: 10-70 ppm in PET bottles, no recycling of Ge possible German-info.com
Kazakh-German Raw Materials Partnership • MoUon cooperation in the fields of geology and mining • BGR / DERA commissioned for its implementation - primary task: re-evaluation of mine projects in Kazakhstan (2012-2013) • Agreement for the disclosure of "analytical" data (information on occurrences and mineral deposits in Kazakhstan) • Survey of selected projects and verification through on site inspection • Presentation of the results to the German and Khazakh industry at an industry workshop in Hannover in December 2013
Methodologicalapproach Vanadium project (South Kazakhstan) Final product: Investor's Handbook Project factsheets (15 projects) Review of data by the Technical Working Group (40) Pre-assessment (deposit quality, reported metal contents and grades, further technical parameters) Screening of 318 projects; pre-selection of 80 projects
BGR Project: Re-evaluation of mine projects in Kazakhstan Sn, Ta Ga, In, Ge, Co REE, Mo, U Ga, V REE Cu, Sb, Ag W In, W U 318 mineral deposits, waste dumps and tailings projects considered Ta, U, REE PGM Ga, In, Ge, Co Mo, PGM, Te, Rh, Se, Ni. Fe PGM, Cu, Co Zn, Pb, Au, W Rh *IM = industrial Minerals Ni = primarycommodity W = possibleby-products
Key aspect TaNb Availability and new potentials for mineral resources Development of a new research topic at BGR: World-wide raw material potentials for metals of strategic economic importance to secure a future supply to the German industry ► Characterisation of complex non-conventional deposit types for an identification of new potentials for high-tech metal supply (process-oriented research, trace metal distribution, exploration indicators) ► Potential for high-tech metals in mine residues ► New technologies for extraction of trace metals (e.g., using bio-leaching) Sb Ge In REE Y NiPGECo
Securing the supply of raw materials in the EU – current initiatives
Hochtechnologie-Elemente in MMR Deep-oceanmineraldepositsassourceofhigh-techmetals 4000 – 6000 m • Ferromanganesenodules (Co, Li, Nd, Ga, Ce, Tb, Dy, Mo) • Ferromanganesecrusts (Co, Te, Se, Pt, Tb, Dy) • Marine sulfides (Ag, Au, In, Ga, Ge, Se, Te, Sb) 1000 – 2500 m (c) NOAA (c) Marum 1800 – 3000 m
Material efficiency of Critical Raw Materials Development of non-conventional deposit types for high-tech metals Natural resources (ores, concentrates) Enhanced recovery ofby-productmetalsfromore (e.g., indiumfromzincore) Making recyclingofmetalsofstrategiceconomicimportancemoreefficient Source: Modifiedfrom Faulstich (2010)
Conclusion, High-Tech Metals • Germany is dependent on the world markets • According to the geology: no shortages for high-tech metals • Shortages caused by the marked situation country concentration, geostrategic risks, conflict minerals • High-tech metals are mostly by-products (co-elements);their production depends on the production of major elements (like Pb, Zn, Cu) • Technical realisation of the production of co-elements by metallurgical treatment (e.g. Ge from coal ash) is needed • Development of non-conventional deposit types (marine mineral resources, oxydized ores) • Low recycling rates • Foto: Voith AG Foto: PerkinElmer Optoelectronics Foto: DG-Solartechnik