1 / 23

The PAMELA electromagnetic calorimeter: performances

The PAMELA electromagnetic calorimeter: performances. E. Mocchiutti 1 , M. Albi 1 , M. Boezio 1 , V. Bonvicini 1 , J. Lund 2 , J. Lundquist 1 , M. Pearce 2 , A. Vacchi 1 , G. Zampa 1 , N. Zampa 1 INFN Trieste 2. KTH Stockholm. The PAMELA experiment The electromagnetic calorimeter

kiara
Télécharger la présentation

The PAMELA electromagnetic calorimeter: performances

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The PAMELA electromagnetic calorimeter: performances • E. Mocchiutti1, M. Albi1, M. Boezio1, V. Bonvicini1, J. Lund2, • J. Lundquist1, M. Pearce2, A. Vacchi1, G. Zampa1, N. Zampa1 • INFN Trieste 2. KTH Stockholm

  2. The PAMELA experiment • The electromagnetic calorimeter • Particle identification • Results • Conclusions Presentation outline

  3. Naples CNR, Florence Bari Florence Frascati Rome Trieste The PAMELA collaboration Russia: Italy: USA: Moscow St. Petersburg GSFC India: NMSU Mumbai Germany: Sweden: Siegen KTH,Stockholm

  4. The PAMELA experiment • Soyuz-TM Launcher from Baikonur • Earth-Observation- Satellite • PAMELA mounted inside aPressurized Container, attached to Satellite pointing to space • Lifetime >3 years

  5. The PAMELA experiment Quasi-polar (70.4°) Elliptical (300÷600 km)

  6. Spatial Resolution • 3.1 μm bending view • 13.1 μm non-bending view • MDR from test beam data  1 TV • Six planes of scintillators strips oriented in the x and y directions • time resolution of ~300 ps • dE/dx determines particle Z Shower tail catcher scintillator ND p/e separation capabilities >10 above 10 GeV/c increasing with energy The PAMELA experiment Anti-coincidence shield Calorimeter

  7. PAMELA will explore: • Antiproton flux 80 MeV - 190 GeV • Positron flux 50 MeV – 270 GeV • Electron flux up to 400 GeV • Proton flux up to 700 GeV • Electron/positron flux up to 2 TeV • Light nuclei (up to Z=6) up to 200 GeV/n • Light isotopes (D, 3He) up to 1 GeV/n • Antinuclei search (sensitivity better than 10-7 in He/He) + • Long-term monitoring of the solar modulation of cosmic rays • Energetic particles from the Sun (e+) • High-energy particles in the Earth magnetosphere The PAMELA experiment

  8. The PAMELA experiment Anti-protons Positrons

  9. The PAMELA experiment

  10. The PAMELA experiment

  11. The PAMELA experiment Confirmed launch date: 15th June 2006 next thursday!

  12. 22 W absorbers 0.26 cm/0.74 X0 • 44 Si planes (380mm thick) • 8x8 cm2 detectors in 3x3 matrix • 96 strips of 0.24 cm per plane • Total depth: 16.3 X0 / ~0.6 int. len. • Mass 110 kg • Power consumption 48 W The PAMELA calorimeter The electromagnetic calorimeter

  13. PAMELA will need to detect: • Anti-protons, electrons background • Positrons, protons background Rejection power needed: 105-106 Particle identification

  14. Shower identification main variables: • Total energy deposit • Starting point of the shower • Longitudinal shower profile • Transverse shower profile • Topological development of the shower Particle identification

  15. PAMELA event Ground Data muon: 2.8 GV

  16. PAMELA event Ground Data hadron: 6.6 GV

  17. Ground data • (Rome 2005) Particle identification

  18. Particle identification FM SPS, September 2003 Magnet/Tracker, Calorimeter SPS, July 2002 Detectors tested at PS / SPS Test facilities as Prototypes and in FM configuration SPS, July 2000

  19. “gpamela” simulation: • PAMELA apparatus • Monte Carlo - GEANT 3.21 • Default GHEISHA hadron shower package Particle identification e (200 GeV/c)

  20. Test-beam data • Particle momentum 50 GeV/c • Cut at 7300 mip • 99.98% proton reduction • 4.3% electron reduction Particle identification Total detected energy 3342 67504

  21. Test-beam data • Particle momentum 50 GeV/c • Cut at 1500 • 50% proton reduction • 2.5% electron reduction Particle identification Topological variable

  22. Closed symbols: test beam data • Open symbols: simulations • Solid arrows: test beam data • Dashed arrow: simulations Results

  23. The PAMELA calorimeter has been tested and studied • Electron/hadron separation has been determined • Possibility to identify rare antiproton and positron components with small background Conclusions

More Related