1 / 11

GPU Computing

GPU Computing. Burim Kameri Fachhochschule Hannover (FHH) Institut für Solarforschung Hameln (ISFH). Inhalt. Motivation Sequentielle vs. parallele Programmierung GPGPU – OpenCL Beispiel – Matrix-Skalar-Multiplikation Optimierung Zusammenfassung. Motivation.

Télécharger la présentation

GPU Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GPU Computing BurimKameri Fachhochschule Hannover (FHH) Institut für Solarforschung Hameln (ISFH)

  2. GPU - Computing Inhalt • Motivation • Sequentielle vs. parallele Programmierung • GPGPU – OpenCL • Beispiel – Matrix-Skalar-Multiplikation • Optimierung • Zusammenfassung

  3. GPU - Computing Motivation

  4. Beispiel: Matrixmultiplikation

  5. GPU - Computing Sequentielle vs. parallele Programmierung • Sequentielle Programmierung Quelle: https://computing.llnl.gov/tutorials/parallel_comp/

  6. GPU - Computing Sequentielle vs. parallele Programmierung • Parallele Programmierung Quelle: https://computing.llnl.gov/tutorials/parallel_comp/

  7. GPU - Computing GPGPU - OpenCL „localmemory“ ist um 100x-150x schneller als der „global memory“! • Zusätzliche Verwendung der GPU für allgemeine Aufgaben memory localmemory privat memory global andconstantmemory Quelle: CUDA C Programming Guide Quelle: http://de.wikipedia.org/wiki/OpenCL

  8. GPU - Computing Beispiel (Matrix-Skalar-Multiplikation) • CPU • GPU (OpenCL) voidmultMatrix(float* A, float c, float* B) { for( i = 0;i < 225;i++ ) { B[i] = A[i] * c; } } __kernel__ voidmultMatrix(float* A, float c, float* B) { intidx = get_global_id(0); B[idx] = A[idx] * c; }

  9. GPU - Computing Optimierung

  10. GPU - Computing Zusammenfassung • Aufteilung des Domänenproblems • Tieferes Verständnis des Domänenproblems nötig • Wissen über das Programmiermodell • work-items, work-groups, Kernels, Speicherhirachien, etc. • Synchronisierung • Tiefes Wissen über die GPU-Architektur • Shared Memory • Kontrollstrukturen mit bedingten Verzweigungen vermeiden

  11. GPU - Computing Dankeschön! Fragen?

More Related