1 / 56

Taller en Análisis filogenéticos comparativos en Ecofisiología

Taller en Análisis filogenéticos comparativos en Ecofisiología. A plicación de Mesquite y R. Programa. Primero (11 Diciembre ) Introduction to Mesquite and R Data Preparation and Manipulation Tardes - Practical Use of Mesquite y R Segundo (12 Diciembre )

kineks
Télécharger la présentation

Taller en Análisis filogenéticos comparativos en Ecofisiología

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Taller en Análisisfilogenéticoscomparativos en Ecofisiología Aplicación de Mesquite y R

  2. Programa • Primero (11 Diciembre) • Introduction to Mesquite and R • Data Preparation and Manipulation • Tardes - • Practical Use of Mesquite y R • Segundo (12 Diciembre) • Selection of Phylogenetic Trees • Supertrees – Assemblying Composite Trees • Sources of Phylogenetic Hypotheses • Estimation of Ancestral Character States • Categorical (Mesquite & R) • Continuous (R – ace)

  3. Programa • Tercera (13 Diciembre) • Estimation of Phylogenetic Signal • Statistical Methods incorporating Phylogenetic information • Phylogenetic Independent Contrasts • Phylogenetic GLS • Multivariate Analyses • Bring your own Data!

  4. Goals of Comparative Analyses • Investigar la evolucióncarácter • La coevolución de caracteres • Control de la no independencia de lasespecies • Hipótesis de ensayo de adaptación

  5. Estadísticastradicionales de asumir la independencia de lasespecies (unidades de muestreo)…

  6. Pero, lasespeciesexhibendiferentesniveles de relación, queafecta a lasinferencias de la adaptación local y la diversificación Pearman et al. TREE 2008

  7. Estimacióncarácter ancestral Garganta Morphs en Urosaurus Feldman et al. 2011. Molecular Phylogenetics and Evolution

  8. Dos importantesprogramas http://mesquiteproject.org/mesquite/mesquite.html http://cran.r-project.org/

  9. Objetivos de Mesquite • Manipulate Phylogenetic Trees • Estimate Ancestral Character States • Estimate Character Correlations • Inferences of Character Evolution • Multivariate Analyses

  10. Objetivospara • How to use R to Manipulate Data • Phylogenetic Comparative Analysis • Statistical Analyses not available in Mesquite

  11. Ventajas de • Free • Many packages available • Powerful and Flexible • Platform Independent • MacOS • Linux • Windows

  12. Página de Iniciopara R

  13. Console de

  14. R Studio – A GUI for http://www.rstudio.com/

  15. 37 Paquetesfilogenéticos en • ape • caper • geiger • motmot • OUwie • phylobase • phyloclim • phytools • picante Sólovoy a describirestospaquetes

  16. DatosNecesarios • Phylogenetic Tree • NEXUS format • NEWICK format ((B:0.2,(C:0.3,D:0.4)E:0.5)F:0.1)A • Data • Continuous • Discrete • Flat Format (Texto, ASCII)

  17. Nexus Data File Format #nexus ... begin trees; translate 1 Phrynosoma, 2 Uta, 3 Petrosaurus, 4 Urosaurus, 5 Sceloporus ; tree one = [&U] (1,2,(3,(4,5)); tree two = [&U] (1,3,(5,(2,4)); end;

  18. A tutorial in Mesquite 1. Characters 2. Taxa 3. Trees Treselementos de Mesquite

  19. PrimeroVentana de Mesquite Projects and Files – list of open projects Log – list of commands

  20. Crear un nuevoproyecto (archivo)

  21. Nuevasopciones de archivo

  22. Numero de caracteres y el tipo de caracteres

  23. Ventana de caracteres

  24. Podemosanotarcaracteres“Show Annotations Panel” MetaData

  25. Taxa se puedenasignar a grupos

  26. Los árbolespuedenestablecerse en diferentesformas

  27. Taxa ventana

  28. Select a Tree

  29. Ver el árbol

  30. Total del Proyecto

  31. A Gentle Introduction to

  32. El intérpreteinteractivo, R

  33. Asigna variables

  34. Types of Variables

  35. Operators

  36. Functions

  37. Combinandoelementos en matrices

  38. Matrices

  39. Operations on Matrices

  40. Dataframes • Rectangular table of information • Can include numbers, text • This is the form of your data when you import into R

  41. Morphology = Dataframe Behaves as a Matrix No Spaces in species or variable names Use attach to directly refer to variable names attach(morphology) Character 2 # gives all values of character 2

  42. Use Help

  43. Importación de datos • Change the “working directory” • Easy in R Studio • Data should be in a clean rectangular matrix • Flat File (No formatting), ASCII text • Exported from excel • First row: Variable Names • First column: Species/Taxon Names • example: Iguana Life History Data

  44. Species SVL Mass CS RCM EggMEggSEggVOffSVLAdSAgeMatEnv Amblyrhynchus_cristatus 279.0 1370.0 2.6 0.18 98.6 90.33 21.8 NA 0.85 41.0 Island Conolophus_pallidus 440.0 4300.0 10.0 NA NA NA NA NA NA NA Island Conolophus_subcristatus 415.0 3600.0 13.5 0.199 51.2 63.4 NA NA 0.9 84.0 Island Ctenosaura_clarki 126.58 70.78 8.5 0.24 2.45 23.37 3.05 NA NA NA Main Ctenosaura_hemilopha 219.33 375.0 27.33 0.21 2.37 21.22 2.69 NA NA NA Main Ctenosaura_pectinata 238.7 482.0 28.0 0.23 3.92 26.3 2.29 NA NA NA Main Ctenosaura_similis 238.39 795.13 31.1 0.4 7.72 30.92 2.28 NA 0.78 22.0 Main Cyclura_carinata 225.0 605.3 5.1 0.21 25.0 52.0 44.87 NA 0.9 72.0 Island Cyclura_ricordi 355.0 1275.0 10.2 NA NA NA NA NA NA NA Island Cyclura_cychlura 405.0 2805.0 8.75 0.21 68.69 73.01 61.34 96.0 NA NA Island Cyclura_nubila 340.0 1700.0 8.12 NA NA NA NA 99.8 NA NA Island Cyclura_cornuta 355.0 3745.6 15.76 NA NA NA NA NA 0.9 72.0 Island Cyclura_inornata 320.0 1336.0 4.1 0.165 55.12 66.0 NA 95.0 NA 132.0 Island Cyclura_stejnegeri 475.0 4516.0 2.4 0.06 115.0 81.66 122.45 NA NA 110.0 Island Dipsosaurus_dorsalis 123.0 70.0 5.6 NA NA NA NA NA 0.66 32.0 Main Iguana_iguana 360.35 115.65 32.86 0.46 15.7 39.35 NA NA NA NA Main Sauromalus_obesus 160.55 180.0 8.59 0.38 8.0 25.0 15.0 NA 0.8 48.0 Main Sauromalus_hispidus 279.0 900.0 22.2 0.24 10.0 25.0 24.0 NA NA NA Island Sauromalus_varius 293.6 1200.0 23.4 0.35 18.0 40.0 28.0 NA NA NA Island Crotaphytus_collaris 84.8 24.66 8.6 0.217 1.23 21.3 NA NA 0.48 12.0 Main

  45. Importing Data • Workhorse function: read.table() iguana.lh <- read.table(file=“iguanalh.txt”, header=TRUE) • iguana.lh (dataframe name) • Check to make sure data were read in correctly • iguana.lh[1:10,] # look at first 10 rows

  46. Otrasformas de importardatos • Other formats: read.csv(), read.delim() • (useful if there are spaces within some fields) • Handy function: file.choose() # navigate to file iguana.lh <- read.table(file=file.choose(), header=T) attach(iguana.lh) # easy to manipulate variables

  47. Factors • Used to represent categorical data; by default, read.table() • converts columns with characters into factors • Factors look like strings, but are treated differently by functions • species #example of a factor • Factors have levels, which are the unique values it takes • levels(species) # example of a factor • Factor levels may be ordered (e.g., low, med, high), which is important in some analyses (see ?factor and ?ordered)

More Related