1 / 59

Augmenting Data Structures

Augmenting Data Structures. Advanced Algorithms & Data Structures Lecture Theme 07 – Part I Prof. Dr. Th. Ottmann Summer Semester 2006. Augmentation Process. Augmentation is a process of extending a data structure in order to support additional functionality. It consists of four steps:

kitra
Télécharger la présentation

Augmenting Data Structures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Augmenting Data Structures Advanced Algorithms & Data Structures Lecture Theme 07 – Part I Prof. Dr. Th. Ottmann Summer Semester 2006

  2. Augmentation Process Augmentation is a process of extending a data structure in order to support additional functionality. It consists of four steps: • Choose an underlying data structure. • Determine the additional information to be maintained in the underlying data structure. • Verify that the additional information can be maintained for the basic modifying operations on the underlying data structure. • Develop new operations.

  3. Examples for Augmenting DS • Dynamic order statistics: Augmenting binary search trees by size information • D-dimensional range trees: Recursive construction of (static) d-dim range trees • Min-augmented dynamic range trees: Augmenting 1-dim range trees by min-information • Interval trees • Priority search trees

  4. Examples for Augmenting DS • Dynamic order statistics: Augmenting binary search trees by size information • D-dimensional range trees: Recursive construction of (static) d-dim range trees • Min-augmented dynamic range trees: Augmenting 1-dim range trees by min-information • Interval trees • Priority search trees

  5. Dynamic Order Statistics • Problem:Given a set S of numbers that changes under insertions and deletions, construct a data structure to store S that can be updated in O(log n) time and that can report the k-th order statistic for any k in O(log n) time. S 5 51 85 13 48 7 34 22 14

  6. 17 7 19 5 13 18 37 1 25 49 33 Binary Search Trees and Order Statistics

  7. 17 7 19 5 13 18 37 1 25 49 33 Binary Search Trees and Order Statistics • Retrieving an element with a given rank: • For a given i, find the i-th smallest key in the set. • Determining the rank of an element: • For a given (pointer to a) key k, determine the rank of k in the set of keys.

  8. Augmenting the Data Structure 33 • Every node v stores two pieces of information: • Its key • The number of its descendants (The size of the subtree with root v) 11 17 51 4 6 9 21 48 92 2 1 4 1 4 73 124 1 2 1 81 1

  9. How To Determine The Rank of an Element 33 11 • Find the rank of key x in the tree with root node v: • Rank(v, x) • 1ifx = key(v) • 2then return 1 + size(left(v)) • 3ifx < key(v) • 4then return Rank(left(v), x) • 5else return 1 + size(left(v)) + Rank(right(v), x) 51 17 4 6 9 21 48 92 1 1 4 2 4 73 124 1 2 1 81 1

  10. 33 11 51 17 4 6 9 21 48 92 1 1 4 2 4 73 124 1 2 1 81 1 How to Find the k-th Order Statistic • Find (a pointer to) the node containing the • k-th smallest key in the subtree rooted • at node v. • Select(v, k)1ifk = size(left(v)) + 12then returnv3ifk ≤ size(left(v))4then returnSelect(left(v), k)5else returnSelect(right(v), k – 1 – size(left(v)))

  11. 33 11 17 51 4 6 9 21 48 92 2 1 4 1 4 73 124 1 2 1 81 1 Maintaining Subtree Sizes Under Insertions • Insert operation • Insert node as into a standard binary search tree. • Add 1 to the subtree size of every ancestor of the new node.

  12. Maintaining Subtree Sizes Under Insertions 33 • Insert operation • Insert node as into a standard binary search tree • Add 1 to the subtree size of every ancestor of the new node 11 17 51 4 6 9 21 48 92 2 1 4 1 4 73 124 1 2 1 64 81 1 1

  13. 33 12 17 51 4 7 9 21 48 92 2 1 5 1 4 73 124 1 3 1 64 81 1 1 Maintaining Subtree Sizes Under Insertions • Insert operation • Insert node as into a standard binary search tree • Add 1 to the subtree size of every ancestor of the new node

  14. Maintaining Subtree Sizes Under Deletions • Delete operation • Delete node as from a standard binary search tree • Subtract 1 from the subtree size of every ancestor of the deleted node

  15. s5 + s3 + 1 s4 s3 s5 Maintaining Subtree Sizes Under Rotations s1 s1 s3 s2 s4 s5

  16. Dynamic Order Statistics—Summary • Theorem: There exists a data structure to represent a dynamically changing set S of numbers with the following properties: • The data structure can be updated in O(log n) time after every insertion or deletion into or from S. • The data structure allows us to determine the rank of an element or to find the element with a given rank in O(log n) time. • The data structure occupies O(n) space.

  17. Examples for Augmenting DS • Dynamic order statistics: Augmenting binary search trees by size information • D-dimensional range trees: Recursive construction of (static) d-dim range trees • Min-augmented dynamic range trees: Augmenting 1-dim range trees by min-information • Interval trees • Priority search trees

  18. 4-Sided Range Queries

  19. 4-Sided Range Queries Goal: Build a static data structure of size O(n log n) that can answer 4-sided range queries in O(log2n + k) time.

  20. Orthogonal d-dimensional Range Search Build a static data structure for a set P of n points in d-space that supports d-dim range queries: d-dim range query: Let R be a d-dim orthogonal hyperrectangle, given by d ranges [x1, x1‘], …, [xd, xd‘]: Find all points p = (p1, …, pd)  P such that x1≤p1≤ x1‘,…,xd≤ pd≤ xd. Special cases: 1-dim range query: 2-dim range query: x2‘ x2 x1 x1‘ x1 x1‘

  21. 1-dim Range Search Standard binary search trees support also 1-dim range queries: 68 37 99 81 55 18 90 74 23 42 61 12 21 49 80 30

  22. 1-dim Range Search Leaf-search-tree: 68 37 99 ∞ 81 55 18 90 74 23 42 61 12 90 99 74 81 12 18 37 42 61 68 21 49 23 21 49 55 80 30

  23. 1-dim Range Tree A 1-dim range tree is a leaf-search tree for the x-values (points on the line). Internal nodes have routers guiding the search to the leaves: We choose the maximal x-value in left subtree as router. Range search: In order to find all points in a given range [l, r] search for the boundary values l and r. This is a forked path; report all leaves of subtrees rooted at nodes v in between the two search paths whose parents are on the search path.

  24. The selected subtrees Split node l r

  25. Canonical Subsets The canonical subset of node v, P(v), is the subset of points of P stored at the leaves of the subtree rooted at v. If v is a leaf, P(v) is the point stored at this leaf. If v is the root, P(v) = P. Observations: For each query range [l, r] the set of points with x-coordinates falling into this range is the disjoint union of O(log n) canonical subsets of P. A node v is called an umbrella node for the range [l, r], if the x-coordinates of all points in its canonical subset P(v) fall into the range, but this does not hold for the predecessor of v. All k points stored at the leaves of a tree rooted at node v, i.e. the k points in a canonical subset P(v), can be reported in time O(k).

  26. 1-dim Range Tree: Summary Let P be a set of n points in 1-dim space. P can be stored in a balanced binary leaf-search tree such that the following holds: Construction time: O(n log n) Space requirement: O(n) Insertion of a point: O(log n) time Deletion of a point: O(log n) time 1-dim-range-query: Reporting all k points falling into a given query range can be carried out in time O(log n + k). The performance of 1-dim range trees does not depend on the chosen balancing scheme!

  27. 2-dim Range tree: The Primary Structure • Static binary leaf-search tree over x-coordinates of points.

  28. The Primary Structure • Static binary leaf-search tree over x-coordinates of points.

  29. The Primary Structure • Static binary leaf-search tree over x-coordinates of points.

  30. The Primary Structure • Static binary leaf-search tree over x-coordinates of points. • Every leaf represents a vertical slab of the plane.

  31. The Primary Structure • Static binary leaf-search tree over x-coordinates of points. • Every leaf represents a vertical slab of the plane. • Every internal node represents a slab that is the union of the slabs of its children.

  32. The Primary Structure • Static binary leaf-search tree over x-coordinates of points. • Every leaf represents a vertical slab of the plane. • Every internal node represents a slab that is the union of the slabs of its children.

  33. The Primary Structure • Static binary leaf-search tree over x-coordinates of points. • Every leaf represents a vertical slab of the plane. • Every internal node represents a slab that is the union of the slabs of its children.

  34. The Primary Structure • Static binary leaf-search tree over x-coordinates of points. • Every leaf represents a vertical slab of the plane. • Every internal node represents a slab that is the union of the slabs of its children.

  35. Answering 2-dim Range Queries • Normalize queries to end on slab boundaries. • Query decomposes into O(log n) subqueries. • Every subquery is a1-dimensional range query on y-coordinates of all points in the slab of the corresponding node.(x-coordinates do not matter!)

  36. The selected subtrees Split node l r

  37. Answering Queries • Normalize queries to end on slab boundaries. • Query decomposes into O(log n) subqueries. • Every subquery is a1-dimensional range query on y-coordinates of all points in the slab of the corresponding node.(x-coordinates do not matter!)

  38. Answering Queries • Normalize queries to end on slab boundaries. • Query decomposes into O(lg n) subqueries. • Every subquery is a1-dimensional range query on y-coordinates of all points in the slab of the corresponding node.(x-coordinates do not matter!)

  39. Answering Queries • Normalize queries to end on slab boundaries. • Query decomposes into O(log n) subqueries. • Every subquery is a1-dimensional range query on y-coordinates of all points in the slab of the corresponding node.(x-coordinates do not matter!)

  40. 2-dim Range Tree y Ty(v) x Ix(v) v Tx

  41. 2-dim Range Tree A 2-dimensional range tree for storing a set P of n points in the x-y-plane is: • A 1-dim-range tree Tx for the x-coordinates of points. • Each node v of Tx has a pointer to a 1-dim-range-tree Ty(v) storing all points which fall into the interval Ix(v). That is: Ty(v) is a 1-dim-range-tree based on the y-coordinates of all points p  P with p  Ix(v). Leaf-search-tree on y-coordinates of poins v Leaf-search-tree on x-coordinates of points

  42. 2-dim Range Tree A 2-dim range tree on a set of n points in the plane requires O(n log n) space. A point p is stored in all associated range trees Ty(v) for all nodes v on the search path to px in Tx. Hence, for each depth d, each point p occurs in only one associated search structure Ty(v) for a node v of depth d in Tx. The 2-dim range tree can be constructed in time O(n log n). (Presort the points on y-coordinates!) p p p p

  43. The 2-Dimensional Range Tree • Primary structure: • Leaf-search tree onx-coordinates of points • Every node stores a secondary structure: • Balanced binary search tree on y-coordinates of points in the node’s slab. Every point is stored in secondary structures of O(log n) nodes. Space: O(n log n)

  44. Answering Queries • Every 2-dimensional range query decomposes into O(log n) 1-dimensional range queries • Each such query takes O(log n + k′) time • Total query complexity: • O(log2 n + k)

  45. 2-dim Range Query Let P be a set of points in the plane stored in a 2-dim range tree and let a 2-dim range R defined by the two intervals [x, x‘], [y, y‘] be given. The all k points of P falling into the range R can be reported as follows: • Determine the O(log n) umbrella nodes for the range [x, x‘], i.e. determine the canonical subsets of P that together contain exactly the points with x-coordinates in the range [x, x‘]. (This is a 1-dim range query on the x-coordinates.) • For each umbrella node v obtained in 1, use the associated 1-dim range tree Ty(v) in order to select the subset P(v) of points with y-coordinates in the range [y, y‘]. (This is a 1-dim range query for each of the O(log n) canonical subsets obtained in 1.) Time to report all k points in the 2-dim range R: O(log2 n + k). Query time can be reduced to O(log n +k) by a technique known as fractional cascading.

  46. The 3-Dimensional Range Tree • Primary structure: • Search tree onx-coordinates of points • Every node stores a secondary structure: • 2-dimensional range tree on points in the node’s slab. Every point is stored in secondary structures of O(log n) nodes. Space: O(n log2n)

  47. Answering Queries • Every 3-dimensional range query decomposes into O(log n) 2-dimensional range queries • Each such query takes O(log2n + k′) time • Total query complexity: • O(log3 n + k)

  48. d-Dimensional Range Queries • Primary structure: • Search tree on x-coordinates • Secondary structures: • (d – 1)-dimensional range trees • Space requirement: • O(n logd – 1 n) • Query time: • O(n logd – 1 n)

  49. Updates are difficult! Insertion or deletion of a point p in a 2-dim range tree requires: • Insertion or deletion of p into the primary range tree Tx according to the x-coordinate of p • For each node v on the search path to the leaf storing p in Tx, insertion or deletion of p in the associated secondary range tree Ty(v). Maintaining the primary range tree balanced is difficult, except for the case d = 1! Rotations in the primary tree may require to completely rebuild the associated range trees along the search path!

  50. Range Trees–Summary • Theorem:There exists a data structure to represent a static set S of n points in d dimensions with the following properties:The data structure allows us to answer range queries inO(logd n + k) time. The data structure occupies O(n logd – 1n) space. • Note: The query complexity can be reduced to O(logd – 1n + k), for d ≥ 2, using a very beautiful technique called fractional cascading.

More Related