1 / 21

GAM531 DPS931 – Week 2

GAM531 DPS931 – Week 2. Into the Engine. Last Time in GAM531…. DX11 Object. DX 11 API. iEngine. Engine. Controller. Manager. Model. 1 or 1. 1 m. 1 m. 1 m. 1 . GL 4.3 Object. GL 4.3 API. 1. DX11 Device. GL 4.3 Device. iController. iModel. 1 or 1. GL 4.3 API. DX 11 API.

koen
Télécharger la présentation

GAM531 DPS931 – Week 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GAM531DPS931 – Week 2 Into the Engine

  2. Last Time in GAM531… DX11 Object DX 11 API iEngine Engine Controller Manager Model 1 or 1 1 m 1 m 1 m 1 GL 4.3 Object GL 4.3 API 1 DX11 Device GL 4.3 Device iController iModel 1 or 1 GL 4.3 API DX 11 API

  3. Stepping into the Engine Engine.hpp namespace Emperor { template <RenderSystem RS> class Engine : public iEngine, public Singleton<Engine<RS>> {…}; } iEngine.hpp namespace Emperor { class iEngine {…}; }

  4. Reviewing Namespaces int main() { Foo a; Bar::Foo b; Bar::Derp::Foo c; } or using namespace Bar; int main() { ::Foo a; Bar::Foo b; Derp::Foo c; } struct Foo { int a; }; namespace Bar{ struct Foo { ::Foo a; }; namespace Derp { struct Foo { Bar::Foo a; }; } }

  5. Reviewing Pure Virtual Classes (Interfaces) class iThing{ virtual void doStuff() = 0; }; class Thing : public iThing { virtual void doStuff() { std::cin << “Thing”; } }; int main() { Thing* a = new Thing(); a->doStuff(); }; int main() { //iThing* a = new iThing(); iThing* a = new BigThing(); a->doStuff(); }; int main() { Thing* a = new BigThing(); a->doStuff(); }; class BigThing : pulic Thing { void doStuff() { std::cin << “BigThing”; } };

  6. The Engine Interface Create & Destroy Engine (Friends for Dynamic Linking) class iEngine { private: friend iEngine* createEngine(RenderSystem); friend void releaseEngine(iEngine*); protected: virtual ~iEngine() {} public: virtual void initialize() = 0; virtual void release() = 0; virtual void setFullScreen(bool) = 0; virtual boolisFullScreen() = 0; virtual void activateDevice(iWindow*) = 0; virtual iResourceController* getResourceController() = 0; virtual iSceneController* getSceneController() = 0; virtual void render() = 0; }; Initialize and Release Engine Assets Activates Device for rendering Render a Single Frame Retrieve Controllers

  7. Back to the Engine Engine.hpp namespace Emperor { template <RenderSystem RS> class Engine : public iEngine, public Singleton<Engine<RS>> {…}; } iEngine.hpp namespace Emperor { class iEngine {…}; }

  8. Template Review class Foo_of_int { int a; public: Foo() {a = 0;} void doStuff() { std::cout << “Foo”; } }; template <class T> class Foo { T a; public: Foo() {a = 0;} void doStuff(); }; int main() { Foo<int> a; Foo<float> b; Foo<char*> c; } template <class T> void Foo<T>::doStuff() { std::cout << “Foo”; }; class Foo_of_char_ptr { char* a; public: Foo() {a = 0;} void doStuff() { std::cout << “Char* Foo”; } }; class Foo_of_float { float a; public: Foo() {a = 0;} void doStuff() { std::cout << “Foo”; } }; template <> void Foo<char*>::doStuff() { std::cout << “Char* Foo”; };

  9. Template Specialization Review… template <RenderSystem RS> class Device{}; int main() { Device<RS_DX11> a; Device<RS_GL43> b; template <> class Device<RS_DX11> { private: IDXGISwapChain* swap; ID3D11Device* dev; ID3D11DeviceContext* con; … }; Device<RS_GL43 + 1> c; } template<> class Device<RS_GL43> { private: HGLRC context; HDC hdc; … };

  10. Template Misc. Review All three are the same! template <class T = int, int N = 4> class Foo { T a[N]; }; int main() { Foo<int, 4> a; Foo<int> b; Foo<> c; } file.hpp template <class T> class Foo { T a; public: void doStuff(); }; file.cpp template <class T> void Foo<T>::doStuff() { std::cout << “Foo”; }; Compiler does nothing! Linker can’t find function! Compiles for int and float, can only be bound to those! template class Foo<int>; template class Foo<float>;

  11. Back to the Engine Engine.hpp namespace Emperor { template <RenderSystem RS> class Engine : public iEngine, public Singleton<Engine<RS>> {…}; } iEngine.hpp namespace Emperor { class iEngine {…}; }

  12. The Singleton Static Variables class Engine { public: static Engine* self; Engine() {self = this;}static Engine* getPtr() { return self; } void stuff(); }; Engine<RS>* engine; x10,000 Engine::getPtr()->stuff();

  13. Our Singleton Class (hold on…) template <class D> class Singleton { private: static D* self; protected: public: Singleton() { if(!self) self = (D*)this; else EMP_FATAL_ERROR(“…"); } virtual ~Singleton() {self = 0;} static D* getPtr() {return self;} }; template <class D> D* Singleton<D>::self = nullptr; template <RenderSystem RS> class Engine : public iEngine, public Singleton<Engine<RS>> {…}; } Engine<RS>::getPtr()->initialize();

  14. Deeper into the Engine Engine Controller 1 m Engine.hpp namespace Emperor { template <RenderSystem RS> class Engine : public iEngine, public Singleton<Engine<RS>> { SceneController<RS> sCont; ResourceController<RS> rCont; … public: iSceneController* getSceneController() {return &sCont;} iResourceController* getResourceController() {return &rCont;} }; }

  15. Why do we use controllers? Convenience & Separation Scene Resource Window

  16. Scene vs. Resource Statue1.obj Summoner.obj FatDude.obj

  17. Controller Manager Into the Controller 1 m iSceneController.hpp namespace Emperor { … class iSceneController { … public: virtual iActor* createActor() = 0; virtual iCamera* createCamera() = 0; virtual iLight* createLight() = 0; virtual iNode* createNode() = 0; }; } SceneController.hpp namespace Emperor { template <RenderSystem RS> class SceneController : public iSceneController { public: ActorManager<RS> actMan; CameraManager<RS> camMan; LightManager<RS> lgtMan; NodeManager<RS> nodMan; … }; }

  18. What does a Manager Do? Hiring – Creating the object Firing – Destroying the object Keeping Tabs – Having a reference to all objects Organizing/Scheduling – Dealing with tasks that deal with all objects Damage Control – Releasing resources if they have not been released by shutdown

  19. Into the Manager Manager Model 1 m BaseManager.hpp template <class T> class BaseManager { protected: ArrayList<T*> objects; ArrayList<T*> activeObjects; public: BaseManager() {} virtual ~BaseManager() {…} T* createObject() {…} void removeObject(T* o) {…} void activateObject(T* o) {…} void deactivateObject(T* o) {…} }; #define ArrayListstd::vector

  20. Finishing Recap • Namespaces allow for the separation and grouping of classes and functions to reduce naming collisions • Interfaces expose a pure virtual class that can be used by external code control objects within another code base • Templates enable coders to write logic that can be reinterpreted by the compiler multiple times with different data types and parameters • The singleton provides a code base with global-like variable access without the issues that come with using global variables • Controllers provide client code with easy to use controls that enable them to create and retrieve specific classes and objects from inside the engine • Managers keep lists of all instances of a certain data type and are able to provide batch processing and damage control when de-allocating objects

  21. To Do • Create zenit wiki accounts if you don’t already have one • Add your user information to the student list on the wiki • Read over Assignment 1 (will be released Friday) • Begin to look for group partners (2-3 per group) • Bookmark the GAM531 website • Make an account on Bit Bucket (sorry…)

More Related