1 / 69

Advanced Catalysis: Biomimetic Oxidation Catalysis

Maria Louloudi. Lab of Inorganic Chemistry Department of Chemistry, University of Ioannina , 45110 Ioannina , GREECE. Advanced Catalysis: Biomimetic Oxidation Catalysis . ?. ?. Phenol oxidation. Fine chemistry & Industry.

kylemore
Télécharger la présentation

Advanced Catalysis: Biomimetic Oxidation Catalysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Maria Louloudi Lab of Inorganic Chemistry Department of Chemistry, University of Ioannina, 45110 Ioannina, GREECE Advanced Catalysis: Biomimetic Oxidation Catalysis

  2. ?

  3. ? Phenol oxidation

  4. Fine chemistry & Industry DEMAND: efficient catalysts for selective oxidationof hydrocarbons under mild conditions alkane oxidation (i.e., CH4 CH3OH, steroid hydroxylation) olefin oxidation Oxidation-degradation of environmental pollutant (i.e.,chlorophenol degradation) GOAL : New oxidation catalysts

  5. Energy saving strategies Catalytic reactions Environmental friendly oxidants Biomimetic Systems Heterogeneous Catalysts

  6. The “Gold Standard” of catalysts • Highly specific • Highly selective • Highly efficient • Catalyze very difficult reactions • N2 NH3 • CO2 + H2O  C6H12O6 • Works better in a cell than in a 100000 l reactor Types of Catalysts - Enzymes

  7. Manganese Catalase Core of the active site in Lactobacillus plantarum catalase. Proposed mechanism of H2O2 decomposition by manganese catalase Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L., Chem. Rev. 2004, 104, 903-938

  8. Manganese catalase mimics Structures of some of the ligands used for manganese catalase mimics

  9. Manganese Superoxide Dismutase (Mn-SOD) Superoxide dismutation mechanism for mononuclear Mn-SOD under physiological conditions The active center of Manganese Superoxide Dismutase Holm, R. H.; Kennepohl, P.; Solomon, E. I., Chem. Rev. 1996, 96, 2239-2314

  10. Manganese SOD mimics Structures of some of the ligands used in the synthesis of Mn complexes and manganese complexes for modeling of MnSOD

  11. P-450 Generally accepted mechanism of Catalytic cycle of P-450 Active site of P-450 (X = H2O or OH–) Mansuy, D.; Battioni, P., in Bioinorganic catalysis, Reedijk, J.; Bouwman, E. Ed; Second Edition, Marcel Deker, New York, 1999; pp 323-354

  12. Methane Monooxygenase (MMO) Active site structures of MMOox and MMOred Wallar, B. J.; Lipscomb, J. D., Chem. Rev. 1996, 96, 2625-2657

  13. Generally accepted mechanism of Catalytic cycle of MMO

  14. Bleomycin Schematic representation of the structure of a part of iron bleomycin Bleomycin is an effective antitumor drug. Its antitumor activity is believed to arise from its ability to activate O2 and to cleave DNA oxidatively in a double strand fashion. The active intermediate is a low-spin FeIII–OOH species. Que, L., Jr., in Bioinorganic Catalysis, Reedijk, J. Ed; First Edition, Marcel Dekker; Inc, New York, 1993; p 347

  15. Catechol oxidase Active site structure Generally accepted mechanism of Catechol oxidase B.Krebs et al Nat.Struct.Biol. 5 (1998) 1084 B.Krebs et al J.Biol.Inorg.Chem. 4 (1999) 56 J.Reedijk et al Chem.Soc.Rev. 35 (2006) 814

  16. Tyrosinase

  17. Tyrosinase mimics

  18. Manganese, Iron and Copper in Biomimetic Oxidation Catalysis

  19. OXIDANTS Manganese, Iron and Copper in Biomimetic Oxidation Catalysis • Molecular oxygen Ο2 • Hydrogen peroxideΗ2Ο2

  20. Mild oxidant • Cheap • Easily available • Environmental friendly (Η2Ο the only side product) 5.High content of active oxygen (47%) Η2Ο2

  21. Mechanisms of Metal-catalyzed Oxidations: General Considerations Metal–oxygen species

  22. Heterolytic oxygen transfer early transition metals (Mo, W, Re, V, Ti, Zr) later transition metals (Ru,Os) and particularly first row elements (Cr, Mn, Fe) Peroxometal versus oxometal pathways

  23. MΝ(salen) catalysts The epoxidation reaction: Structure of a typical Mn(salen) complex

  24. Jacobsen’s Mn(salen) catalysts Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N., J. Am. Chem. Soc. 1990, 112, 2801-2803 Zhang, W.; Jacobsen, E. N., J. Org. Chem. 1991, 56, 2296-2298 Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L., J. Am. Chem. Soc. 1991, 113, 7063-7064

  25. Berkessel’s imidazole tethered Mn(salen) complex Berkessel, A.; Frauenkron, M.; Schwenkreis, T.; Steinmetz, A., J. Mol. Catal. A-Chem. 1997, 117, 339-346 Jacobsen’s PyO tethered Mn(salen) complex Finney, N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen, K. B.; Jacobsen, E. N., Angew. Chem.-Int. Edit. Engl. 1997, 36, 1720-1723

  26. Katsuki’s conformationally fixed Mn(salen) complex Ito, Y. N.; Katsuki, T., Tetrahedron Lett. 1998, 39, 4325-4328

  27. Mn-porphyrins [Mn(Cl8tdcpp)]+, a “third generation” porphyrin complex Meunier, B., Chem. Rev. 1992, 92, 1411-1456

  28. Manganese-Me3tacn Complexes and Derivatives Schematic structure of dinuclear manganese complexes that can be formed with the ligand Me3tacn ligand under different synthetic conditions de Boer, J. W.; Brinksma, J.; Browne, W. R.; Meetsma, A.; Alsters, P. L.; Hage, R.; Feringa, B. L., J.Am. Chem. Soc. 2005, 127, 7990-7991

  29. Other Mn Complexes Schematic drawing of the ligandstptn and R,R-mcp Brinksma, J.; Hage, R.; Kerschner, J.; Feringa, B. L., Chem. Commun. 2000, 537-538 Murphy, A.; Dubois, G.; Stack, T. D. P., J. Am. Chem. Soc. 2003, 125, 5250-5251

  30. Formation of the peroxycarbonate complex (A) by the direct reaction of peroxymonocarbonate and (B) by the reaction of a peroxy complex with hydrogencarbonate Lane, B. S.; Vogt, M.; DeRose, V. J.; Burgess, K., J. Am. Chem. Soc. 2002, 124, 11946-11954

  31. Manganese Catalysts Containing Phenol-oxazoline Ligands Hoogenraad, M.; Kooijman, H.; Spek, A. L.; Bouwman, E.; Haasnoot, J. G.; Reedijk, J., Eur. J. Inorg.Chem. 2002, 2897-2903

  32. ManganeseCatalystsContainingAcetylacetone-based Schiff Base Ligands Ag. Stamatis, P. Doutsi, Ch. Vartzouma, K.C. Christoforidis, Y. Deligiannakis, M. Louloudi, J. Mol. Catal. A 297 (2009), 44 Ch. Vartzouma, E. Evaggellou, Y. Sanakis, N. Hadjiliadis, M. Louloudi, J. Mol. Catal. A 263 (2007), 77 M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, J. Mol. Catal. A 198 (2003), 231

  33. Iron Complexes Kim, C.; Dong, Y. H.; Que, L., J. Am. Chem. Soc. 1997, 119, 3635-3636 Chen, K.; Costas, M.; Kim, J. H.; Tipton, A. K.; Que, L., J. Am. Chem. Soc. 2002, 124, 3026-3035 Ryu, J. Y.; Kim, J.; Costas, M.; Chen, K.; Nam, W.; Que, L., Chem. Commun. 2002, 1288-1289

  34. Wada, A.; Ogo, S.; Nagatomo, S.; Kitagawa, T.; Watanabe, Y.; Jitsukawa, K.; Masuda, H., Inorg. Chem. 2002, 41, 616-618 Roelfes, G.; Lubben, M.; Leppard, S. W.; Schudde, E. P.; Hermant, R. M.; Hage, R.; Wilkinson, E. C.;Que, L.; Feringa, B. L., J. Mol.Catal. A-Chem. 1997, 117, 223-227. Roelfes, G.; Lubben, M.; Hage, R.; Que, L.; Feringa, B. L., Chem. Eur. J. 2000, 6, 2152-2159

  35. Copper Complexes Oxidation of 3,5-di-t-butylcatechol (DTBC) to3,5-di-t-butylquinone(DTBQ)withΟ2 (DTBC) oxidation to (DTBQ) with 71% yield D.Zois, Ch. Vartzouma, Y. Deligiannakis, N. Hadjiliadis, L. Casella, E. Monzani, M. Louloudi, J. Mol. Catal. A 261 (2007), 306-317 E. Monzani, L. Quinti, A. Perotti, L. Casella, M. Gullotti, L. Randaccio,S. Geremia, G. Nardin, P. Faleschini, G. Tabbi, Inorg. Chem. 37 (1998) 553–562 M. Gullotti, L. Santagostini, R. Pagliarin, A. Granata, L. Casella, J. Mol.Catal.: A Chem. 235 (2005) 271–284

  36. Catalytic cycle for the oxidation of DTBC by the dinuclear copper(II) complexes with O2 (DTBC) to (DTBQ)with 62% yield M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, J. Mol. Catal. A 198 (2003) 231–240

  37. HETEROGENEOUSvsHOMOGENEOUSCATALYSIS Easy recovery of the catalyst ADVANTAGES: * * Catalyst protection by the support * Other benefits from the support: reactivity & selectivity * No metal leaching --- environmental friendly procedure * Catalyst reuse * Reduced reactivity of the active catalyst centres DISADVANTAGES: * H2O2 dismutation by the support

  38. Examples of Different Inorganic Supports ΤΑCN complex on silica surface Catalyst immobilized into zeolite “Salen” catalyst into MCM-41 “Salen” catalyst into clay layers

  39. HETEROGENEOUS CATALYSTS Schematic representation of supported metal complexes : heterogeneous catalysts

  40. The Active Catalyst Synthetic strategy

  41. Supported homogeneous catalysts The same coordination environment & immobilization by covalent bond encapsulation Immobilization on a membrane

  42. Silica modification via sol-gel procedure The same coordination environment & immobilization by covalent bond

  43. Possible evolution of a simple Q-type center during sol-gel reaction: 15different species can be detected

  44. Hydrolysis and condensation reactions are pH-dependant.

  45. Development and condensation of silicon-centeres during the gel formation are also pH-dependent

  46. Synthetic strategy The Active Catalyst

  47. Synthetic procedures of supported metal complexes used as heterogeneous catalysts

  48. Preparation of an organically modified mesoporous silica via sol-gel methodology

  49. Synthesis of silicon-precursors • Hydrosililation 2. Nucleophilic abstraction of halogens

  50. Synthesis of silicon-precursors 3. Grignard-reactions 4. Condensation reactions

More Related