# The Standard Model of Particle Physics and Beyond - PowerPoint PPT Presentation

The Standard Model of Particle Physics and Beyond

1 / 84
The Standard Model of Particle Physics and Beyond

## The Standard Model of Particle Physics and Beyond

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. - 10 lectures The Standard Model of Particle Physics and Beyond H. Fritzsch

2. classicalphysics:a physicalsystemisgivenbythefunctionsofthecoordinatesandoftheassociatedmomenta –

3. quantumphysics:coordinatesandmomentaareHermiteanoperators in theHilbert spaceofstates

4. 1927: Schrödinger equation for the wave function Erwin Schrödinger

5. harmonicoscillator

6. Oscillator classical

7. Gauß curve

8. Symmetryin Quantum Physics

9. A. externalsymmetriesB. internalsymmetries

10. externalsymmetries:Poincare group conservationlaws: energy momentum angular momentum

11. externalsymmetries:exact in Minkowskispace

12. General Relativity:noenergyconservationnomomentumconservationnoconservationof angularmomentum

13. internalsymmetries:IsospinSU(3)Color symmetryElectroweakgaugesymmetryGrand Unification: SO(10)Supersymmetry

14. internalsymmetriesbrokenbyinteraction: isospinbrokenbyquarkmasses: SU(3)brokenby SSB: electroweaksymmetryunbroken: colorsymmetry

15. symmetriesaredescribedmathematicallybygroups

16. symmetrygroups n finite or infinite

17. examples of groups: integer numbers: 3 + 5=8, 3 + 0=3, 5 + (-5) = 0 real numbers: 3.20 x 2.70=8.64, 3.20 x 1 = 3.20 3.20 x 0.3125 = 1

18. Niels Abel Norway 19th century

19. A symmetryisa transformationof thedynamical variables, whichleavethe action invariant.

20. Classicalmechanics:  translationsof spaceand time – ( energy, momentum ) rotationsofspace ( angular momentum )

21. Special Relativity => Poincare group: translationsof 4 space - time coordinates + Lorentz transformations

22. Henri Poincare late19th century

23. Symmetry in quantum physics ( E. Wigner, 1930 … ) U: unitary operator

24. Eugene Wigner Nobel prize 1964

25. Poincare group P:- time translations -- spacetranslations -- rotationsofspace -- „rotation“ betweentime andspace -

26. e.g. rotationsofspace: - - SO(3)< P

27. Casimir operatorof Poincare group

28. symmetry U The operator U commutes with the Hamiltonoperator H: If U acts on a wave function with a specific energy, the new wave function must have the same energy ( degenerate energy levels ).

29. discretesymmetries P ~ paritysymmetry CP - symmetry CPT - symmetry

30. P: exactsymmetry in the strong andelectromagneticinteractions

31. P:maximal violationin theweakinteractions

32. theoryofparityviolation:1956: T. D. Lee andC.N.Yangexperiment: Chien-Shiung Wu( Columbia university )

33. Lee Yang Wu