1 / 20

Simplifying Polynomials

Simplifying Polynomials. 13-2. Warm Up. x. 1. 2. 2. Identify the coefficient of each monomial. 1. 3 x 4 2. ab 3. 4. – cb 3 Use the Distributive Property to simplify each expression. 5. 9(6 + 7) 6. 4(10 – 2). 3. 1. –1. 32. 117. Learn to simplify polynomials .

lanai
Télécharger la présentation

Simplifying Polynomials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simplifying Polynomials 13-2

  2. Warm Up x 1 2 2 Identify the coefficient of each monomial. 1.3x42.ab 3.4. –cb3 Use the Distributive Property to simplify each expression. 5. 9(6 + 7) 6. 4(10 – 2) 3 1 –1 32 117

  3. Learn to simplify polynomials.

  4. Examples: Identifying Like Terms 3 2 2 3 5x + y + 2 – 6y + 4x Like terms: 5x3 and 4x3, y2 and –6y2 Like terms: 3a3b2, 2a3b2, and –a3b2 3 2 3 2 2 3 2 3 3a b + 3a b + 2a b – a b Identify like terms. Identify like terms. Identify the like terms in each polynomial. A. 5x3 + y2 + 2 – 6y2 + 4x3 B. 3a3b2 + 3a2b3 + 2a3b2 - a3b2

  5. Example: Identifying Like Terms 7p3q2 + 7p2q3 + 7pq2 There are no like terms. Identify like terms. Identify the like terms in the polynomial. C. 7p3q2 + 7p2q3 + 7pq2

  6. Try This 4 2 2 4 4y + y + 2 – 8y + 2y Like terms: 4y4 and 2y4, y2 and –8y2 7n4r2 + 3a2b3 + 5n4r2 + n4r2 Identify like terms. Identify like terms. Identify the like terms in each polynomial. A. 4y4 + y2 + 2 – 8y2 + 2y4 B. 7n4r2 + 3a2b3 + 5n4r2 + n4r2 Like terms: 7n4r2, 5n4r2, and n4r2

  7. Try This There are no like terms. Identify the like terms. Identify the like terms in the polynomial. C. 9m3n2 + 7m2n3 + pq2 9m3n2 + 7m2n3 + pq2

  8. To simplify a polynomial, combine like terms. It may be easier to arrange the terms in descending order (highest degree to lowest degree) before combining like terms.

  9. Example: Simplifying Polynomials by Combining Like Terms 4x2 + 2x2– 6x + 7 + 9 2 6x – 6x + 16 Identify like terms. Combine coefficients: 4 + 2 = 6 and 7 + 9 = 16 Arrange in descending order. Simplify. A. 4x2 + 2x2 + 7 – 6x + 9 4x2 + 2x2 – 6x + 7 + 9

  10. Example: Simplifying Polynomials by Combining Like Terms 3n5m4+ n5m4 –6n3m – 8n3m 3n5m4+ n5m4 –6n3m – 8n3m 4n5m4–14n3m Arrange in descending order. Identify like terms. Combine coefficients: 3 + 1 = 4 and –6 – 8 = – 14. Simplify. B. 3n5m4–6n3m + n5m4 – 8n3m

  11. Try This Identify the like terms. Combine coefficients: 2 + 5 = 7 and 6 + 9 = 15 Arrange in descending order. Simplify. A. 2x3+ 5x3 + 6 – 4x + 9 2x3+ 5x3 – 4x + 6 + 9 2x3+ 5x3 – 4x + 6 + 9 7x3– 4x + 15

  12. Try This Arrange in descending order. Identify like terms. Combine coefficients: 2 + 1 = 3 and –7 + –9 = –16 Simplify. B. 2n5p4–7n6p + n5p4 – 9n6p 2n5p4+ n5p4 –7n6p – 9n6p 2n5p4+ n5p4 –7n6p – 9n6p 3n5p4–16n6p

  13. Sometimes you may need to use the Distributive Property to simplify a polynomial.

  14. Example: Simplifying Polynomials by Using the Distributive Property 2 3 3(x + 5x ) 2 3 3 x + 3  5x 2 3 3x + 15x Distributive Property Simplify. A. 3(x3 + 5x2)

  15. Example: Simplifying Polynomials by Using the Distributive Property –4(3m3n + 7m2n) + m2n –4  3m3n – 4  7m2n + m2n –12m3n – 28m2n + m2n –12m3n – 27m2n Distributive Property Combine like terms. Simplify. B. –4(3m3n + 7m2n) + m2n

  16. Try This 2(x3+ 5x2) 2  x3 + 2  5x2 2x3 + 10x2 Distributive Property Simplify. A. 2(x3 + 5x2)

  17. Try This –2(6m3p + 8m2p) + m2p –2  6m3p – 2  8m2p + m2p –12m3p – 16m2p + m2p –12m3p – 15m2p Distributive Property Combine like terms. Simplify. B. –2(6m3p + 8m2p) + m2p

  18. Example: Business Application 2 2 2(r + rh) = 2r + 2rh The surface area of a right cylinder can be found by using the expression 2(r2 + rh), where r is the radius and h is the height. Use the Distributive Property to write an equivalent expression.

  19. Try This 2 2 3a(b + c) = 3ab + 3ac Use the Distributive Property to write an equivalent expression for 3a(b2+ c).

  20. Lesson Quiz 2 2 2x and 5x , z and –3z 2ab2 and –5ab2, 4a2b and a2b 15x2 + 10 6k2 + 8k + 8 12mn2 + 9n 3h3–5h2 + 8h – 9 Identify the like terms in each polynomial. 1. 2x2 – 3z + 5x2 + z + 8z2 2. 2ab2 + 4a2b – 5ab2 – 4 + a2b Simplify. 3. 5(3x2 + 2) 4. –2k2 + 10 + 8k2 + 8k – 2 5. 3(2mn2 + 3n) + 6mn2 6. 4h2 + 3h3 – 7 – 9h2 + 8h – 2

More Related