1 / 50

Sensory Processes 3270 Lecture 9

Sensory Processes 3270 Lecture 9. KEYWORDS ---- TASTE I. Taste Primaries: sweet, sour, salty, bitter, papilla (nipple) types: fungiform (fungus-like), foliate (leaf-like), circumvallate (around the ramparts), taste buds (found on papilla), respond to more than one ‘primary'

larissa
Télécharger la présentation

Sensory Processes 3270 Lecture 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sensory Processes 3270 Lecture 9

  2. KEYWORDS ---- TASTE I Taste Primaries: sweet, sour, salty, bitter, papilla (nipple) types: fungiform (fungus-like), foliate (leaf-like), circumvallate (around the ramparts), taste buds (found on papilla), respond to more than one ‘primary' taste cells (found within taste buds), no axons, connect/synapse with afferent fibres coding of quality, activity across a population, pattern of firing of nerves related to perceptual abilities in rats (responses to different salts, ammonium, potassium and sodium chloride), most fibres respond to more than one primary

  3. KEYWORDS ---- TASTE II taste thresholds depend on: temperature (different primaries alter differently), tongue region, genetics (phenylthiocarbamide: to 2/3rds of white western folk tastes bitter; 1/3rd no taste), concentration (eg. saccharin low sweet; high bitter), age, adaptation,

  4. KEYWORDS ---- TASTE III taste preferences, Humans: sweet (+); bitter (-), mostly in place at birth; Cats and chickens: indifferent to sweet; rat/cat/rabbit/sheep: salt (+); hamster: salt (-) taste cravings, salt, calcium, potassium, etc.. specific changes in threshold when deprived (eg. for salt) cultural influences, conditioned taste aversion neural pathway, uncrossed, taste cells, VII cranial nerves (corda tympani division of facial nerve), IX cranial nerve (glossopharyngeal), solitary nucleus, ventral posterior medial nucleus of thalamus,taste cortex (near mouth representation of somatosensory cortex), brain stem vomit centres

  5. The 12 Cranial Nerves 1 olfactory 2 optic 3 oculomotor 4 trochlear 5 trigeminal 6 abducens 7 facial 8 auditory and vestibular 9 glossopharyngeal 10 vagus 11 accessory 12 hypoglossal

  6. Sensory Processes 3270 Chemical senses SMELL

  7. FUNCTIONS of SMELL • Gatekeepers (good in, bad reject) • orient in space • mark territory • guide to find other animals • guide to find food • sex • humans, perfumes indicate still important • detect spoiled food • fire • anosmia • sex?

  8. DigiScents is developing this device, dubbed the iSmell, to puff appropriate smells at you as you surf the Web. Image courtesy of Digiscents, Inc.

  9. Bloodhounds can pick up a 24hr old trail. Dogs have 1,000,000,000,000 olfactory receptors and we have about 10,000,000. We can smell happiness and fear. Everyone has an unique smell .. except identical twins! Sniffer rats have been used to detect explosives!!!

  10. An olfactometer

  11. Discrimination threshold • Weber Fractions • Taste 0.08 8% • Brightness 0.08 8% • Loudness 0.05 5% • Vibration 0.04 4% • Line length 0.03 3% • Heaviness 0.02 2% • Electric shock 0.01 1% For smell, can be as low as 5% (for n-butyl alcohol)..

  12. Episodic odours 100% N of recall Lab vision Lab odours 60% 1 yr time RECALL OF ODOURS

  13. HUMAN OLFACTORY ABILITIES undershirts -- 75% identify themselves -- 75% identify gender infants can identify mothers from milk smell McClintock effect (synchonized menstrual cycles) -- works through sweat

  14. THREE PARTS TO SMELL SYSTEM 1 --- OLFACTORY 2 --- VOMERONASAL 3 --- SOMATOSENSORY --- trigeminal --- CHEMESTHESIS --- texture, heat, irritation

  15. OLFACTORY BULB

  16. The olfactory mucosa

  17. OLFACTORY EPITHELIUM

  18. Olfactory receptor neurones ---replaced every 60 days --- about 10,000,000 (in humans) --- about 1,000 types olfactory receptors (on the olfactory receptor neurones) --- about 1,000 types olfactory binding proteins --- delivers odorants to receptor neurones.

  19. CONVERGENCE

  20. The olfactory receptor protein is a ‘G’ protein. It crosses the membrane 7 time. Similar to the VISUAL PIGMENT. There are about 1000 variations.

  21. A bishop’s mitre

  22. Olfactory receptor Neurones Mitral cells Granule cells

  23. ZONES of the OLFACTORY MACULA & glomerulus

  24. GLOMERULI -- balls of tangled connections between MITRAL cells and OLFACTORY RECEPTOR NEURONES. -- four zones (from macula) -- convergence (about 1,000 to 1) -- olfactory receptor types kept organized -- properties sharpened by lateral inhibition -- send information to ANCIENT paleocortex

  25. ERROR: the pathway from paleocortex to orbitofrontal cortex is via the THALAMUS

  26. PATHWAYS OLFACTORY olfactory neurones --> mitral cells --> paleocortex --> 1 thalamus --> orbitofrontal cortex 2 limbic system TRIGEMINAL nerve endings in nose --> trigeminal nerve --> thalamus 1 somatosensory cortex 2 orbitofrontal cortex VOMERONASAL vomeronasal organ --> accessory olfactory bulb --> brainstem areas to do with sex

  27. OLFACTORY PATHWAYS

  28. Multi-modal convergence in the ORBITOFRONTAL CORTEX

  29. Coding

  30. putrid fragrant ethanol burned resinous spicy HENNING SMELL PRISM

  31. Codes in olfactory receptors

  32. GLOMERULAR LAYER OF OLFACTORY BULB (hot spots)

  33. Multi-modal convergence in the ORBITOFRONTAL CORTEX

  34. Neurone 1 Neurone 2 Orbito-frontal cortex: bimodal cells

  35. PHEROMONES & the VOMERONASAL system

  36. VOMERONASAL SYSTEM

  37. VOMERONASAL SYSTEM

  38. VOMERONASAL SYSTEM

  39. Introduction to hearing under 2220_10 Speech under 3270_(speech)

  40. KEYWORDS -- SMELL I olfactory binding protein, olfactory receptors cells continuously regenerate (about every 60 days), cilia (on olfactory receptor cells), glomerulus (contact zones between receptor cells and mitral cells:plural glomeruli), convergence (1,000:1), mitral cell, olfactory tubercle of entorhinal cortex (part of paleocortex), medial dorsal nucleus of thalamus , olfactory neocortex paleocortex associated with limbic system, limbic system associated with emotions (electrical stimulation causes sham rage), limbic system associated with memories (H.M. had lesions here and lost the ability to memorize things), no topographic mapping in olfactory cortex (unusual), some hot spots in olfactory tubercle and on olfactory mucosa

  41. KEYWORDS -- SMELL II odour quality, no primaries identified in olfactory system, poor tuning of receptors (to chemicals or chemical types) (sharpened by lateral inhibition, inhibitory interneurones, granule cells), Henning smell prism, stereochemical theories based on lock and key partially successful, BUT no receptor sites identified, similar shaped molecules can be associated with different smell perceptions cells broadly tuned (responding to many different chemicals associated with many different smells) coding intensity= firing rate/recruitment, quality = distributed pattern code, problems in identifying many smells at once, binding problem

  42. KEYWORDS -- SMELL III odour thresholds, olfactorium; unique technical problems!, humans very sensitive (eg. mercaton can be detected at 1 part per 50,000,000,000), affected by gender; can be affected by menstrual cycle, affected by age adaptation, thresholds raised (by exposure), masking (by other chemicals), some cross effects: eg. adapting to orange affects smell of lemons identification, can identify gender from shirt, prefer own odours, odour memories long lasting; associated with emotions (via limbic system) "designed not to forget”, pheromones, releasers (immediate effect), eg. bitch on heat, territorial markers, humans?, McClintock effect (synchronized menstrual cycles), primers (longer term) eg. mice need males around for proper oestrus cycles

  43. KEYWORDS -- SMELL IV PATHWAYS olfactory receptor cells to mitral cells in olfactory bulb to olfactory tubercle in paleocortex THEN 1 to medial dorsal thalamus to olfactory cortex (ORBITOFRONTAL CORTEX) 2 to limbic system 3 brain stem pathways associated with pheromones ALSO inhibitory pathway (via inhibitory interneurone: granule cells) from one olfactory bulb to the other to do with detecting the DIRECTION from which a smell originates

More Related