1 / 16

Abstract Syntax

Leonidas Fegaras. Abstract Syntax. Abstract Syntax Tree (AST)‏. A parser typically generates an Abstract Syntax Tree (AST): A parse tree is not an AST. get token. get next character. AST. scanner. parser. source file. token. E T E F T E

Télécharger la présentation

Abstract Syntax

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Leonidas Fegaras Abstract Syntax

  2. Abstract Syntax Tree (AST)‏ • A parser typically generates an Abstract Syntax Tree (AST): • A parse tree is not an AST get token get next character AST scanner parser source file token E T E F T E F T F id(x) + id(y) * id(z)‏ + x * y z

  3. Building Abstract Syntax Trees in Java abstract class Exp { } class IntegerExp extends Exp { public int value; public IntegerExp ( int n ) { value=n; } } class TrueExp extends Exp { public TrueExp () {} } class FalseExp extends Exp { public FalseExp () {} } class VariableExp extends Exp { public String value; public VariableExp ( String n ) { value=n; } }

  4. Exp (cont.)‏ class BinaryExp extends Exp { public String operator; public Exp left; public Exp right; public BinaryExp ( String o, Exp l, Exp r ) { operator=o; left=l; right=r; } } class UnaryExp extends Exp { public String operator; public Exp operand; public UnaryExp ( String o, Exp e ) { operator=o; operand=e; } }

  5. Exp (cont.)‏ class CallExp extends Exp { public String name; public List<Exp> arguments; public CallExp ( String nm, List<Exp> s ){ name=nm; arguments=s; } } class ProjectionExp extends Exp { public Exp value; public String attribute; public ProjectionExp ( Exp v, String a ) { value=v; attribute=a; } }

  6. Exp (cont.)‏ • class RecordElement { • public String attribute; • public Exp value; • public RecordElement ( String a, Exp v ) { attribute=a; value=v; } • } • class RecordExp extends Exp { • public List<RecordElement> elements; • public RecordExp ( List<RecordElement> el ) { elements=el; } • } • … or better: • class RecordExp extends Exp { • public Map<String,Exp> elements; • public RecordExp ( Map<String,Exp> el ) { elements=el; } • }

  7. Examples • The AST for the input (x-2)+3 new BinaryExp("+", new BinaryExp("-", new VariableExp("x"), new IntegerExp(2)), new IntegerExp(3))‏ • The AST for the input f(x.A,true)‏ new CallExp("f", Arrays.asList(new ProjectionExp(new VariableExp("x"), "A"), new TrueExp()))‏

  8. Building ASTs in Scala Use case classes: sealed abstract class Exp case class TrueExp () extends Exp case class FalseExp () extends Exp case class IntegerExp ( value: Int ) extends Exp case class StringExp ( value: String ) extends Exp case class VariableExp ( name: String ) extends Exp case class BinaryExp ( operator: String, left: Exp, right: Exp ) extends Exp case class UnaryExp ( operator: String, operand: Exp ) extends Exp case class CallExp ( name: String, arguments: List[Exp] ) extends Exp case class ProjectionExp ( record: Exp, attribute: String ) extends Exp case class RecordExp ( arguments: List[(String,Exp)] ) extends Exp For example, the AST for the input (x-2)+3 BinaryExp("+",BinaryExp("-",VariableExp("x"),IntegerExp(2)),IntegerExp(3)) the AST for the input f(x.A,true) CallExp("f",List(ProjectionExp(VariableExp("x"),"A"),TrueExp()))

  9. Adding Semantic Actions to a Parser int E () { int left = T(); if (current_token == '+') { read_next_token(); return left + E(); } else if (current_token == '-') { read_next_token(); return left - E(); } else error(); }; int T () { if (current_token=='num') { int n = num_value; read_next_token(); return n; } else error(); }; • Right-associative grammar: E ::= T + E | T - E T ::= num • After left factoring: E ::= T E' E' ::= + E | - E T ::= num • Recursive descent parser:

  10. Adding Semantic Actions to a Parser int E () { return Eprime(T()); }; int Eprime ( int left ) { if (current_token=='+') { read_next_token(); return Eprime(left + T()); } else if (current_token=='-') { read_next_token(); return Eprime(left - T()); } else return left; }; int T () { if (current_token=='num') { int n = num_value; read_next_token(); return n; } else error(); }; • Left-associative grammar: E ::= E + T | E - T T ::= num • After left recursion elimination: E ::= T E' E' ::= + T E' | - T E' | T ::= num • Recursive descent parser:

  11. Table-Driven Predictive Parsers • Use the parse stack to push/pop both actions and symbols but they use a separate semantic stack to execute the actions push(S); read_next_token(); repeat X = pop(); if (X is a terminal or '$')‏ if (X == current_token)‏ read_next_token(); else error(); else if (X is an action)‏ perform the action; else if (M[X,current_token] == "X ::= Y1 Y2 ... Yk")‏ { push(Yk); ... push(Y1); } else error(); until X == '$';

  12. Example • Need to embed actions { code; } in the grammar rules • Suppose that pushV and popV are the functions to manipulate the semantic stack • The following is the grammar of an interpreter that uses the semantic stack to perform additions and subtractions: E ::= T E' $ { print(popV()); } E' ::= + T { pushV(popV() + popV()); } E' | - T { pushV(-popV() + popV()); } E' | T ::= num { pushV(num); } • For example, for 1+5-2, we have the following sequence of actions: pushV(1); pushV(5); pushV(popV()+popV()); pushV(2); pushV(-popV()+popV()); print(popV());

  13. Bottom-Up Parsers • can only perform an action after a reduction • We can only have rules of the form X ::= Y1 ... Yn { action } where the action is always at the end of the rule; this action is evaluated after the rule X ::= Y1 ... Yn is reduced • How? In addition to state numbers, the parser pushes values into the parse stack • If we want to put an action in the middle of the right-hand-side of a rule, we use a dummy non-terminal, called a marker For example, X ::= a { action } b is equivalent to X ::= M b M ::= a { action }

  14. CUP • Both terminals and non-terminals are associated with typed values • these values are instances of the Object class (or of some subclass of the Object class)‏ • the value associated with a terminal is in most cases an Object, except for an identifier which is a String, for an integer which is an Integer, etc • the typical values associated with non-terminals in a compiler are ASTs, lists of ASTs, etc • You can retrieve the value of a symbol s at the right-hand-side of a rule by using the notation s:x, where x is a variable name that hasn't appeared elsewhere in this rule • The value of the non-terminal defined by a rule is called RESULT and should always be assigned a value in the action • eg if the non-terminal E is associated with an Integer object, then E ::= E:n PLUS E:m {: RESULT = n+m; :}

  15. Machinery • The parse stack elements are of type struct( state: int, value: Object )‏ • int is the state number • Object is the value • When a reduction occurs, the RESULT value is calculated from the values in the stack and is pushed along with the GOTO state • Example: after the reduction by E ::= E:n PLUS E:m {: RESULT = n+m; :} the RESULT value is stack[top-2].value + stack[top].value which is the new value pushed in the stack along with the GOTO state

  16. ASTs in CUP (calc.cup) • Need to associate each non-terminal symbol with an AST type • Using Scala case classes in Java (!) non terminal Expr exp; non terminal List expl; exp ::= exp:e1 PLUS exp:e2 {: RESULT = new BinOpExp(“+”,e1,e2); :} | exp:e1 MINUS exp:e2 {: RESULT = new BinOpExp(“-”,e1,e2); :} | id:nm LP expl:el RP {: RESULT = new CallExp(nm,el); :} | INT:n {: RESULT = new IntConst(n); :} ; expl ::= expl:el COMMA exp:e {: RESULT = append(e,el); :} | exp:e {: RESULT = cons(e,nil); :} ;

More Related