1 / 60

First results from STAR experiment at RHIC

This article presents the first results from the STAR experiment at RHIC, focusing on the study of the Quark-Gluon Plasma. The experiment involves multiple institutions from different countries and utilizes various detectors and technologies.

Télécharger la présentation

First results from STAR experiment at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lawrence Berkeley National Lab. First results from STAR experiment at RHIC Masashi Kaneta for the STAR collaboration

  2. RHIC'S ULTIMATE GOAL:QUARK-GLUON PLASMA

  3. Brookhaven National Lab.

  4. The STAR collaboration ~ 400 collaborators 34 institutions 7 countries

  5. STAR Institutions U.S. Labs: Argonne, Berkeley, and Brookhaven National Labs U.S. Universities: Arkansas, UC Berkeley, UC Davis, UCLA, Carnegie Mellon, Creighton, Indiana, Johns Hopkins, Kent State, MIT, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, UT Austin, Washington, Wayne State, Yale • Brazil : • Universidade de Sao Paol • England: • University of Birmingham • France: • Institut de Recherches Subatomiques Strasbourg, SUBATECH – Nantes • Germany: • Max Planck Institute – Munich, University of Frankfurt • Poland: • Warsaw University Warsaw University of Technology • Russia: • MEPHI – Moscow, LPP/LHE JINR – Dubna, IHEP – Protvino

  6. STAR Detector Magnet Year1 Ready for next runNext year(2002) or later Time Projection Chamber Coils Silicon Vertex Tracker TPC Endcap & MWPC yr.1 SVT ladder Silicon Strip Detector FTPCs ZDC ZDC Endcap EMC (half in 2003) Vertex Position Detectors Barrel EMC (install over next 4 years) Central Trigger Barrel + TOF patch RICH

  7. Outer and Inner Sectors of the Pad Plane 60 cm 190 cm • 24 sectors • 12 on each side • Large pads for good dE/dx resolution in the Outer sector • Small pads for good two track resolution in the inner sector

  8. Mating the OFC & Gas Vessel • WindingOuter Field Cage • Mating OFC & Gas Vessel • OFC Check • Moving the Central Membrane

  9. The STAR TPC Under Construction at LBL • First Successful Mating of: • Gas Vessel • Outer Field Cage • Sector Wheels • Central membrane

  10. The TPC arrives at BNL from LBL on11/6/97

  11. System Tests 10/19/98-10/30/98 • TPC outside the magnet • All FEE electronics installed on TPC • Slow Controls tested • Cathode • Anode • Gating Grid • CTB trigger prototype • miniDAQ TPC integration tests on the assembly hall floor

  12. Au+Au, sNN=130 GeV Central Event From real-time Level 3 display. Data Taken June 25, 2000. ~2000 tracks per event

  13. Particle identification by dE/dx p dE/dx [keV/cm] K p e |p/Z| [GeV/c]

  14. Focus on • Hadrons • Measured : h-, p ±, K±, K0s, K*0, K*0, p, p, d, 3He, 3He, t,L, L, X -, X + • In future :g, p 0,f,W -+W -,r, w, h, h’, D, L(1520), S(1385), J/ and more • Freeze-out conditions of low momentum hadrons by: • Spectra/Ratios • Thermal/Chemical Freeze-out • Particle correlations • Size parameters • Event anisotropy • v2

  15. Spectra

  16. Spectra • Low pT spectra • h-, p, K, p  Thermal freeze-out • High pT spectra • h-  hard process • Particle ratios, yield (dN/dy, dN/dh) • p/p, L/L, X+/X-, K+/K-, K-/p-, p/p-, K*0/h- • Stopping • Chemical freeze-out • d/p • Coalescence

  17. h- multiplicity • 6% systematic error shown on 3 points only Preliminary ZDC pulse height 5% Central CTB pulse height

  18. h- centrality dependence 40% 30% 20% 10% 5%

  19. h- centrality dependence(cont.) STAR, Preliminary 15% Increase in <pT> from 80% sample to top 5% central STAR, Preliminary NA49 UA1

  20. h- pT distribution STAR Preliminary STAR Preliminary Statistical errors negligible Errors on points: systematic error on STAR data Gray bars: cumulative error including UA1 scaling Hard: Binary collisions TAA = 26 ± 2 mb-1 Soft: Wounded nucleon

  21. Particle Identification • dE/dx • e, p, K, p • Kink, V0, Mixed event • Kaon to muon decay • L, X, W, g, p0, etc. • Resonances p  K d e Vo “kinks”: K  + 

  22. g and p0 STAR Preliminary p0 gg invariant mass [GeV] • The e+e- pair from g conversion is measured • Large g acceptance • pT = 50 MeV/c to ~4 GeV/c, |h|<1.8 Typical e+e-pair from g e+ e+ e- e- e- e+ e- e+

  23. f  K+K- f

  24. Identified particle spectra p- Inverse slope: 30015(sta.)30(sys.) MeV Inverse slope: 56540(sta.)50(sys.) MeV Inverse slope: 19015(sta.)20(sys.) MeV p 58-85% 45-58% 26-34% 11-18% 6% K- central collisions 

  25. Inverse slope vs. centrality • Indicate increased radial flow in central collisions at RHIC Event fraction [%] STAR Preliminary K- (kink) P e r i p h e r a l  C e n t r a l

  26. Kink K • Kaon from muon decay m nm K Inverse slope: 2675(sta.)10(sys.) MeV Inverse slope: 2725(sta.)10(sys.) MeV |y|<0.5 Event fraction = top 7% |y|<0.5 Event fraction = top 7% K+ K- STAR Preliminary STAR Preliminary

  27. “Kink” Kaon Rapidity Distribution Mid-y K+ dN/dy = 35 ±3(stat.)±5(sys.) Mid-y K- dN/dy = 30±2.5(stat.)±4(sys.)

  28. mT distribution from Hydrodynamical model bs R • Cylindrical source • Flow profile included s Ref. : E.Schnedermann et al, PRC48 (1993) 2462 ( ) Inverse slope parameter ~ Ref.: T.Csörgő and B, Lörstad, PRC52 (1995) 3291 ( ) Ref.: H.v. Gersdorff, QM1999 proceedings p.697c

  29. Thermal(Kinetic) freeze-out STAR (sNN=130 GeV) Hydrodynamical model: E. Schnedermann et al. PRC48(1993)2462 mT-mass [GeV/c2] • Thermal freeze-out at RHIC • Temperature is similar or less than at SPS • Larger radial flow than at SPS Inverse slope parameter [GeV/c2] mass [GeV/c2]

  30. Ratios

  31. p/p ratio • Minimum bias data • Systematic errors<10% for both • No or weak pT and rapidity dependence STAR submitted STAR submitted rapidity

  32. L and L V0 Mixed event Higher statistics than V0 method (~10 times/event) ~0.84 L/event, ~ 0.61 L/event STAR submitted Minimum Bias (150K event) Top 15% central event 0<p<2GeV/c Invariant mass [GeV] Invariant mass [GeV]

  33. L/L ratio • No significant pT dependence in the ratio • The mean ratio = 0.72±0.04 |y|<0.5 L/L ratio • From 200 K Central trigger Au+Au Events (top ~15% multiplicity.) • Systematic errors are under evaluation

  34. K+/K- ratio ratio STAR Preliminary |y|<0.5 Event fraction = top 7% pT [GeV/c]

  35. X+ and X-

  36. Centrality dependence of ratios • An effect of anti-baryon absorption in central collisions? L/LPreliminary X+/X-Preliminary p/p submitted to PRL pT 0.6-0.8 GeV/c |y|<0.3 Only statistic errors are shown Systematic errors p/p : 10% L/L and X+/X- : under evaluation (nch/nmax) P e r i p h e r a l  C e n t r a l

  37. Centrality dependence of ratios(cont.) • K+/K- ratio seems to be independent of centrality in each measurement Kinks dE/dx STAR preliminary STAR preliminary pT < 0.35 GeV/c K+/K- ratio K+/K- ratio P e r i p h e r a l  C e n t r a l P e r i p h e r a l  C e n t r a l dN-/dh # primary track

  38. K-/p- and p/p- ratios • K-/p-,p/p- • enhanced by ~2 in central vs. peripheral collisions • p/K-~ constant • In central collisions: K-/p- 15% • p/p- 8% P e r i p h e r a l  C e n t r a l

  39. K*0K++- • Central events (top 14%) • primary tracks: K+- • K* signal • mK*0 = 0.8930.003 [GeV] • K*0 = 0.058 0.015 [GeV] • (stat. error only) • PDG • mK*0 = 0.89610.00026 [GeV] • K*0 = 0.05070.0006 [GeV] • Background estimate: •  20% Breit-Wigner

  40. K*0K-++ • Central events (top 14%) • primary tracks: K-+ • K* signal • mK*0 = 0.8960.004 [GeV] • K*0 = 0.063 0.011[GeV] • (stat. error only) • PDG • mK*0 = 0.89610.00026 [GeV] • K*0 = 0.05070.0006 [GeV] • Background estimate: •  18% Breit-Wigner

  41. K*0 • The first measurement of K*0 in heavy ion collisions (K*0 +K*0)/2 / h- STAR preliminary • K*0/h- Only statistical errors are shown Systematic error ~ 25% • K*0/h- |y|<0.5 0.2<pT<2.0 GeV/c pp (s=63GeV) : K*0/p K*0/h- e+e-(s=91GeV) : K*0/p P e r i p h e r a l  C e n t r a l h-: |h|<0.5 pT>0.1 GeV/c Centrality h-/h-max

  42. Summary of ratios (stat.) (sys.) (Event fraction) p/p = 0.60  0.02  0.06(top6%) /(M.B. trig.)= 0.70  0.02(top8%) /(central trig.)= 0.72  0.04 (top15%) X+/X-= 0.82  0.08(top15%) K+/K-(kink)= 1.17  0.07(top15%) K+/K-(dE/dx) = 1.14  0.01  0.06(top6%) K-/p- =0.15  0.02(top6%) p/p- =0.080  0.008(top6%) K*0/h-= 0.060  0.006  0.015(top15%) K*0h-= 0.058  0.006  0.015 (top15%) • Anti-particle/particle ratio is flat as a function of pT • Anti-baryon/baryon ratio is larger than at SPS, but not baryon free at mid-rapidity at RHIC

  43. Chemical freeze-out model Particle density of each particle mq: lightquark chemical potential q: 1 for u and d, -1 for u and d ms: strangeness chemical potential s: 1 for s, -1 for s g: spi-isospin freedom Decay all resonances Comparable particle ratios to experimental data

  44. Chemical freeze-out 250 Model prediction of ratio LEP/ SppS quarks-gluons RHIC 200 SPS 150 AGS Chemical Temperature Tch [MeV] Experimental ratio 100 SIS 50 hadrons 0 0 200 400 600 800 1000 1200 Baryonic Potential B(=3q) [MeV]

  45. HBT

  46. Particle correlations (HBT) • Size parameters • Transverse and longitudinal direction • Duration time • From Rout and Rside • Phase space density • Combination of radius parameter and yield

  47. HBT Many topics in STAR measurement • Pion HBT • Centrality • Transverse momentum • The HBT excitation function • Phase space density • Event-by-Event HBT • K0s K0s, LL • pp, pp • ppp correlations • Non-identical particles

  48. 3D analysis Pratt-Bertsch Parameterization (measured in the LCMS frame; (p1+ p2)z=0) p1+p2 y qOut • Information: • source size • duration time(for transparent sources) qSide p2 p1 x

  49. 3 Dimensional -- - HBT qOut,qSide<20MeV/c C(qLong) qLong [GeV/c] 1D Projections of the 3D Pratt-Bertsch Parameterization qSide,qLong<20MeV/c qOut,qLong<20MeV/c C(qout) C(qSide) Top 12% central events 0.125<pT<0.225 [GeV/c] |y|<0.5 qout [GeV/c] qSide [GeV/c] • Coulomb corrected with a 5 fm source • No Coulomb correction [fm] [fm] [fm] Systematic error result from the pair cuts (merging) and Coulomb correction (sta.) (sys.)

  50. Centrality dependence 0.125 GeV/c < pT <0.225 GeV/c STAR Preliminary • ++, --,parameters similar • `s don’t change with multiplicity • radii increase with multiplicity • roughly similar to AGS/SPS sys. error • Comparison with AGS/SPS • parameters roughly same • similar increase in ROut, RSide • (geometric effect) tot:32-72% 12-32% 0-12%

More Related