200 likes | 527 Vues
LITERATURE REVIEW IN THE USE OF NANOPARTICLE FORMULATIONS OF SILVER (AG), GOLD (AU), AND ZINC (ZN) AS ANTI-INFECTIVE AGENTS. William Evans, Austin Sack and Sherlie Llorens. Preceptor: Dr. Ashley Spies. November 2, 2018. INTRODUCTION. Objective.
E N D
LITERATURE REVIEW IN THE USE OF NANOPARTICLE FORMULATIONS OF SILVER (AG), GOLD (AU), AND ZINC (ZN) AS ANTI-INFECTIVE AGENTS William Evans, Austin Sack and Sherlie Llorens Preceptor: Dr. Ashley Spies November 2, 2018
INTRODUCTION Objective Conduct a literature review of metal nanoparticles and their use as an alternative to antimicrobial agents Why? Pathogen resistance to antimicrobials has become increasingly problematic Significant gaps in knowledge within this field Nanotechnology within the field of antimicrobial agents Benefits: Decreased toxicity and cost, while overcoming resistance Goal Understand the bioactivities of metal nanoparticles in order to understand past research and gaps in knowledge within this field Image retrieved from: https://www.med.uottawa.ca/sim/data/Images/Antibiotic_resistance_cartoon.jpg
METHODS AND RESULTS OVERVIEW Methods PubMed Search Silver: Mesh Terms: Metal, Anti-Infective Agents, Nanoparticles 112 Total Articles Filters: Review article, past 5 years Gold Mesh Terms: Metal, Anti-Infective Agents, Nanoparticles Filters: Review article, past 5 years Zinc 37 Mesh Terms: Metal, Anti-Infective Agents, Nanoparticles Relevant Articles Filters: Past 5 years* Results 112 Articles found in our search of silver, gold and zinc 37 of these were relevant to the bioactivities of interest (e.g. mechanism of action, toxicity, and application) Figure 1: Total articles evaluated in the study
RESULTS- SILVER Table 1: Results obtained Silver nanoparticles (12/52 articles)
RESULTS- GOLD Table 2: Results obtained Gold nanoparticles (11/20 articles)
RESULTS-ZINC Table 3: Results obtained Zinc nanoparticles (14/40 articles)
SILVER: MECHANISM OF ACTION 2 proposed mechanisms Contact killing Ion-dependent manner Figure 2 : Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311-3327.
SILVER: TOXICITY • High concentrations of silver nanoparticles are toxic and can cause various health problems • Argyria – skin toxicity • Argyrosis – eye toxicity Figure 3: Argyrosis Figure 4: Argyria Figures 3 & 4: retrieved from: https://jamanetwork.com/data/Journals/DERM/926965/dlv130005f1.png http://2.bp.blogspot.com/-Sm24tr3u3L4/Twv99m8DHeI/AAAAAAAAB7E/P-K5ygWx6wE/s1600/Argyrosis+-+Silver+Poisoning+%25282%2529.jpg
SILVER: APPLICATIONS Antibacterial activity against E. coli S. aureus S. mutans S. epidermis Medical Wound/burn healing Artificial joint replacements Surgery infection prophylaxis Cleaning chemicals Fabric cleaners Figure 5: Image retrieved from: https://sep.yimg.com/ay/yhst- 128880362216497/acticoat-flex-3-7-silver-dressings-by-smith-nephew-2.jpg Solar energy collectors
MECHANISM OF ACTION: GOLD Change in membrane potential and prevention of ATPase activities Inhibition of ribosome subunit binding for tRNA Figure 6: Vimbela, G. V, & Fraze, C. (2017). Antibacterial properties and toxicity from metallic nanomaterials.
GOLD: TOXICITY Production of ROS Irreversible blocking of potassium ion channels Cytotoxic effects seen when nanoparticles are <2nm Figure 7 & 8 : Schmid, G., Kreyling, W. G., & Simon, U. (2017). Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 91(9), 3011– 3037.
GOLD: APPLICATIONS Antibacterial activity against Pseudomonas aeruginosa Salmonella typhi E. Coli S. Aureus S. Epidermidis Cancer treatment Figure 9: Mocan, L., Pop, T., Mosteanu, O., Agoston-coldea, L., Matea, C. T., Gonciar, D., & Zdrehus, C. (2017). Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles, 2255–2263. Thermal ablation therapy
MECHANISM OF ACTION: ZINC Antimicrobial activity unknown Proposed mechanisms: Production of Zn ions and radical oxygen species (ROS)27,34 Release of Zn2+ ions as a result of ZnO decomposition27,34 The electrostatic interaction between ZnO NPs and bacteria cell surface, prompted damage and subsequent membrane breakdown27,34 Figure 10: ZnO proposed mechanism of action retrieved from https://www.sciencedirect.com/science/article/pii/S2468203917300560#fig2
ZINC: TOXICITY Toxic levels27 Not well established Due to the low doses used for efficacy High systemic concentration of zinc can lead to: Nausea and Vomiting Stomach pain Diarrhea Figure 11: Retrieved from https://www.ganjllc.com/impact-ethnicity-digestive-diseases/
ZINC: APPLICATIONS Bactericidal Gram positive, Gram negative and antifungal coverage: Escherichia coli Staphylococcus aureus Staphylococcus epidermidis Drug forms and formulations: Hydrogels7 Figure 12: Hydrogel Prosthetic coating Wound dressings5 Figure 13: Wound dressings Figures 13 and 14 Retrieved from https://parthenoninc.com/dermagran-amorphous-zinc-saline-hydrogel-dressing-3-oz/ . https://www.google.com/search?hl=en&q=hydrogel+dressing&tbm=isch&tbs=simg:CAQSlgEJLVWfEyjbm3Iai
CONCLUSION Metal nanoparticles are a promising alternative to commonly used anti- microbials Gaps in knowledge exist which must be understood before the area can be advanced This project has allowed us to use information gathered from several different studies in the past 5 years and to develop a summary in the form an information table
REFERENCES 1. Abdel-rahman, L. H., Abu-dief, A. M., El-khatib, R. M., & Abdel-fatah, S. M. (2016). Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorganic Chemistry, 69, 140–152. https://doi.org/10.1016/j.bioorg.2016.10.009 2. Anna, K., Speruda, M., & Krzy, E. (n.d.). Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. https://doi.org/10.3390/ijms19020444 3. Arshad, M., Qayyum, A., Abbas, G., Afshan, G., & Nazir, A. (2018). Zn-doped SiO 2 nanoparticles preparation and characterization under the e ff ect of various solvents : Antibacterial , antifungal and photocatlytic performance evaluation, 185(March), 176–183. https://doi.org/10.1016/j.jphotobiol.2018.04.043 4. Ashfaq, M., Verma, N., & Khan, S. (2016). Copper / zinc bimetal nanoparticles-dispersed carbon nano fi bers : A novel potential antibiotic material, 59, 938–947. https://doi.org/10.1016/j.msec.2015.10.079 5. Babushkina, I. V, Mamontova, I. A., & Gladkova, E. V. (2015). Metal Nanoparticles Reduce Bacterial Contamination of Experimental Purulent Wounds, 158(5), 692–694. https://doi.org/10.1007/s10517- 015-2837-5 6. Choi1, H.-J., , Jin-Seok Choi2 , Byeong-Ju Park1 , Ji-Ho Eom1, So-Young Heo1, M.-W. J., An3, K.-S., & Yoon1, & S.-G. (2014). Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate, 2–10. https://doi.org/10.1038/srep06271 7. Cristina, M., Gomez, G., Romano, I., & Laurienzo, P. (2015). Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity, 125, 103–112. 8. Cyphert, E. L., & Recum, H. A. Von. (2017). Emerging technologies for long-term antimicrobial device coatings : advantages and limitations, (2010), 788–798. https://doi.org/10.1177/1535370216688572 9. Durán, N., Durán, M., Jesus, M. B. De, Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles : A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 789–799. https://doi.org/10.1016/j.nano.2015.11.016 10. Durán, N., Nakazato, G., & Seabra, A. B. (2016). Antimicrobial activity of biogenic silver nanoparticles , and silver chloride nanoparticles : an overview and comments. Applied Microbiology and Biotechnology, 6555–6570. https://doi.org/10.1007/s00253-016-7657-7 11. El-batal, A. I., Mosalam, F. M., Ghorab, M. M., Hanora, A., & Elbarbary, A. M. (2018). International Journal of Biological Macromolecules Antimicrobial , antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. International Journal of Biological Macromolecules, 107, 2298–2311. https://doi.org/10.1016/j.ijbiomac.2017.10.121 12. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver Nanoparticles as Potential Antibacterial Agents, 8856–8874. https://doi.org/10.3390/molecules20058856 13. Halbus, A. F., Horozov, T. S., & Paunov, V. N. (2017). Colloid particle formulations for antimicrobial applications. Advances in Colloid and Interface Science, 249(May), 134–148. https://doi.org/10.1016/j.cis.2017.05.012 14. Halevas, E., Nday, C. M., Kaprara, E., Psycharis, V., Raptopoulou, C. P., & Jackson, G. E. (2015). Sol – gel encapsulation of binary Zn ( II ) compounds in silica nanoparticles . Structure – activity correlations in hybrid materials targeting Zn ( II ) antibacterial use, 151, 150–163. https://doi.org/10.1016/j.jinorgbio.2015.06.004 15. Joe, J., Sivalingam, P., & Chen, B. (2018). Toxicological effects of silver nanoparticles. Environmental Toxicology and Pharmacology, 40(3), 729–732. https://doi.org/10.1016/j.etap.2015.09.003 16. Kumar, M. S., & Das, A. P. (2017). Emerging nanotechnology-based strategies for diagnosis and therapeutics of urinary tract infections : A review. Advances in Colloid and Interface Science, 249(June), 53– 65. https://doi.org/10.1016/j.cis.2017.06.010
REFERENCES CONT. 17. Kumar, R., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite, 62, 843–851. https://doi.org/10.1016/j.msec.2016.02.032 18. Maleki, S., Lot, F., Barzegar-jalali, M., & Ag, O. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031 19. Mocan, L., Pop, T., Mosteanu, O., Agoston-coldea, L., Matea, C. T., Gonciar, D., & Zdrehus, C. (2017). Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles, 2255– 2263. 20. Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Puia, C., … Mocan, L. (2017). Development of nanoparticle - based optical sensors for pathogenic bacterial detection. Journal of Nanobiotechnology, 1–14. https://doi.org/10.1186/s12951-017-0260-y 21. Patil, M. P., & Kim, G. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, 79–92. https://doi.org/10.1007/s00253-016-8012-8 22. Rajeshkumar, S., & Bharath, L. V. (2017). Chemico-Biological Interactions Mechanism of plant-mediated synthesis of silver nanoparticles e A review on biomolecules involved , characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019 23. Schmid, G., Kreyling, W. G., & Simon, U. (2017). Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 91(9), 3011–3037. https://doi.org/10.1007/s00204-017-2016-8 24. Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., & Aguilar, Z. P. (2014). Gold nanoparticles: various methods of synthesis and antibacterial applications Monic, (8), 1320–1344. 25. Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., & Chopade, B. A. (2014). Microbial synthesis of gold nanoparticles : Current status and future prospects. Advances in Colloid and Interface Science, 209, 40–48. https://doi.org/10.1016/j.cis.2013.12.011 26. Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology. https://doi.org/10.1186/s12951-018-0334-5 27. Vimbela, G. V, & Fraze, C. (2017). Antibacterial properties and toxicity from metallic nanomaterials. 28. Wahid, F., Zhou, Y., Wang, H., Wan, T., Zhong, C., & Chu, L. (2018). International Journal of Biological Macromolecules Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. International Journal of Biological Macromolecules, 114, 1233–1239. https://doi.org/10.1016/j.ijbiomac.2018.04.025 29. Wesam Salem, Deborah R. Leitner, Franz G. Zingl, Gebhart Schratter, Ruth Prassl, W. G., & Joachim Reidl, and S. S. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli, 305(1), 85–95. 30. Xu, C., Cai, Y., Ren, C., Gao, J., & Hao, J. (2015). Zinc-Triggered Hydrogelation of, 1–7. https://doi.org/10.1038/srep07753 31. Zhang, H., Jung, J., & Zhao, Y. (2016). Preparation , characterization and evaluation of antibacterial activity of catechins and catechins – Zn complex loaded  -chitosan nanoparticles of different particle sizes. Carbohydrate Polymers, 137, 82–91. https://doi.org/10.1016/j.carbpol.2015.10.036 32. Zhang, X., Liu, Z., Shen, W., & Gurunathan, S. (2016). Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. https://doi.org/10.3390/ijms17091534 33. Yamada, M., Foote, M., & Prow, T. W. (2015). Therapeutic gold, silver, and platinum nanoparticles, 7(June). https://doi.org/10.1002/wnan.1322 34. Zhang, L., Jiang, Y., Wen, D., Ding, Y., (2016). Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. https://doi:10.1016/j.msec.2016.08.044.