1 / 31

On the Multifractal Dimensions at the Anderson Transition

On the Multifractal Dimensions at the Anderson Transition. Imre Varga Departament de Física Teòrica Universitat de Budapest de Tecnologia i Economia , Hongria. Imre Varga Elm életi Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1111 Budapest, Magyarország.

lela
Télécharger la présentation

On the Multifractal Dimensions at the Anderson Transition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On the Multifractal Dimensionsat the AndersonTransition Imre Varga Departament de Física Teòrica Universitat de Budapest de Tecnologiai Economia, Hongria Imre Varga Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1111 Budapest, Magyarország Coauthors: José Antonio Méndez-Bermúdez, AmandoAlcázar-López (BUAP, Puebla, México) thanks to : OTKA, AvH

  2. Outline • Introduction • The Anderson transition • Essential features of multifractality • Random matrix model: PBRM • Heuristic relations forgeneralizeddimensions • Spectral compressibility vs. multifractality • Wigner-Smith delay time • Further tests • Conclusions and outlook

  3. Anderson’s model (1958) • Hamiltonian • Energiesenuncorrelated, randomnumbers from uniform(bimodal, Gaussian, Cauchy, etc.) distribution W • Nearest-neighbor„hopping” V (symmetries:R, C, Q) • Bloch states for W V, localized states for W  V W V?

  4. Anderson localization Sridhar 2000 Billyet al. 2008 Jendrzejewskiet al. 2012 Hu et al. 2008

  5. Spectral statistics • W <Wc • extended states • RMT-like: • W > Wc • localizedstates • Poisson-like: • W = Wc • multifractalstates • intermediatestat. ‘mermaid’ semi-Poisson RMT

  6. Eigenstates at small and largeW Extended state Weak disorder, midband Localized state Strong disorder, bandedge (L=240) R.A.Römer

  7. Multifractal eigenstate at the critical point http://en.wikipedia.org/wiki/Metal-insulator_transition (L=240) R.A.Römer

  8. Multifractal eigenstate at the critical point • Inverse participation ratio • higher precision • scaling withL • Box-counting technique • fixedL • „state-to-state”fluctuations • PDF analyzis

  9. Multifractal eigenstate at the critical point Do these states exist at all? Yes

  10. Multifractal states in reality LDOS változása a QH átmeneten keresztül n-InAs(100) felületre elhelyezett Cs réteggel

  11. Multifractal states in reality LDOS fluctuations in the vicinity of the metal-insulator transition Ga1-xMnxAs

  12. Multifractality in general • Turbulence (Mandelbrot) • Time series – signal analysis • Earthquakes • ECG, EEG • Internet data traffic modelling • Share, asset dynamics • Music sequences • etc. • Complexity • Human genome • Strange attractors • etc. Common features • self-similarity across many scales, • broad PDF • muliplicative processes • rare events

  13. Multifractality in general • Very few analytically known • binary branching process • 1d off-diagonal Fibonacci sequence • Baker’s map • etc • Numerical simulations • Perturbation series (Giraud 2013) • Renormalization group - NLM – SUSY (Mirlin) • Heuristic arguments

  14. Numerical multifractal analysis Parametrization of wave function intensities Theset of pointswherescales with Scaling: • Box size: • System size: Averaging: • Typical: • Ensemble:

  15. Numerical multifractal analysis Parametrization of wave function intensities Theset of pointswherescales with • convex • Symmetry (Mirlin, et al. 06)

  16. Numerical multifractal analysis Generalized inverse participation number, Rényi-entropies Mass exponent, generalized dimensions Wave function statistics parabolic og-normal

  17. Numerical multifractal analysis applicationtoquantumpercolation, seeposterby L. Ujfalusi Rodriguezet al. 2010

  18. Correlations at the transition Interplay of eigenvector and spectralcorrelations • q=2, Chalker et al. 1995 • q=1, Bogomolny 2011 Cross-correlation of multifractaleigenstates Auto-correlation of multifractaleigenstates Enhanced SC Feigel’man2007 Burmistrov 2011 New Kondophase Kettemann 2007

  19. Effect of multifractality(PBRM) Generalize! Take the model of the model! PBRM (a random matrix model)

  20. b PBRM: Power-law Band Random Matrix • model: matrix, • asymptotically: • free parameters and Mirlin, et al. ‘96, Mirlin ‘00

  21. PBRM Mirlin, et al. ‘96, Mirlin ‘00

  22. weakmultifractality • strong multifractality Mirlin, et al. ‘96, Mirlin ‘00

  23. Generalizeddimensions JAMB és IV (2012)

  24. PBRM atcriticality General relations Spectralstatistics and e.g.: JAMB és IV (2012)

  25. Higher dimensions, 2dQHT Replace For using 3dAMIT JAMB és IV (2012)

  26. Surpisingly robust and general Different problems • Random matrix ensembles • Ruijsenaars-Schneider ensemble • Critical ultrametric ensemble • Intermediate quantum maps • Calogero-Moser ensemble • Chaos • baker’s map • Exact, deterministic problems • Binary branching sequence • Off-diagonal Fibonacci sequence JAMB és IV (2013)

  27. Scattering: system + lead • Scatteringmatrix • Wigner-Smith delay time • Resonance widths: eigenvalues of polesof

  28. Scattering: PBRM + 1 lead • JA Méndez-Bermúdez – Kottos ‘05 Ossipov – Fyodorov ‘05: • JA Méndez-Bermúdez – IV06:

  29. Scattering exponents Wigner-Smith delay time JAMB és IV (2013)

  30. Summary and outlook • Multifractal states in general • Randommatrixmodel (PBRM) • heuristic relations tested for many models, quantities • New physicsinvolved • Kondo, SC, graphene, etc. • Outlook • Interactingparticles (cf. Mirlinet al. 2013) • Decoherence • Proximityeffect (SC) • Topologicalinsulators Thanks for your attention

More Related