1 / 16

Cosmological simulations Analytical model Model vs observations

The History of the Baryon Budget Yann Rasera Supervisor: Romain Teyssier and Jean-Pierre Chièze Horizon Project. Cosmological simulations Analytical model Model vs observations. Cosmological Simulations. RAMSES an Adaptative Mesh Refinement code Hydrodynamics and gravity

lidia
Télécharger la présentation

Cosmological simulations Analytical model Model vs observations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The History of the Baryon BudgetYann Rasera Supervisor: Romain Teyssier and Jean-Pierre ChièzeHorizon Project • Cosmological simulations • Analytical model • Model vs observations Rencontres de Moriond

  2. Cosmological Simulations • RAMSES an Adaptative Mesh Refinement code • Hydrodynamics and gravity • Cooling: primordial abundances • Heating: Haardt&Madau (1996) UV ionizing background • Star formation: Schmidt law and comoving density threshold • Serie of simulations • One very high resolution run • 5123 coarse cells/5 refinement levelformal resolution 163843 !!! • 350h on 256 processors up to z=2.8 • Box length: 10 h-1 Mpc • Star formation time scale t*= 30 Gyr • 6 high resolution runs • 2563 coarse cells/5 refinement level formal resolution 81923 !!! • Box length: 1-10-100 h-1 Mpc • Star formation time scale t*= 3 and 30 Gyr Rencontres de Moriond

  3. Gas density (z=3) Rencontres de Moriond

  4. Stellar density and age (z=3) Rencontres de Moriond

  5. Results (z=3) Gas density 2500h-1kpc 630h-1kpc 160h-1kpc 40h-1kpc Age and density of stars Rencontres de Moriond

  6. Analytical model Goal: Fast prediction of the baryon budget history 4 BARYON PHASES: • Diffuse gas (Ly) • Hot gas in halos • Cold gas in discs • Stars Rencontres de Moriond

  7. A simple analytical model • Cosmic accretion rate: • Accretion of diffuse gas (Tvir>Tmin) • Cosmic cooling rate: • Fast cooling: • Slow cooling (Bremsstrahlung): • Average over the mass function: • Star formation and cosmic winds: • Star formation rate: • Winds: • 2 main physical parameters: and Rencontres de Moriond

  8. Evolution of the 4 phases • Ordinary differential equations Note: IDL routine avalaible upon request Rencontres de Moriond

  9. t*=2Gyr/w=3 t*=3Gyr t*=30Gyr 10h-1Mpc 3243 2163 1443 963 643 1h-1Mpc 100h-1Mpc RAMSES, no winds Rasera&Teyssier 2005 GADGET, with winds Springel&Hernquist 2003 Physical density threshold Comoving density threshold Validation of the model Good estimate of finite mass resolution Simulations vs analytical model Rencontres de Moriond

  10. Influence of the 2 main parameters t*=halo star formation time scale Delays CSFR w=wind efficiency Lowers CSFR Analytical model: fast parameter space exploration Rencontres de Moriond

  11. Observations vs model:SFR(z) Elbaz compilation: Hughes et al. 1998, Steidel et al. 1999, Flores et al. 1999, Glazebrook et al. 1999, Yan et al. 1999, Massarotti et al. 2001, Giavalisco et al. 2004 • Good fit: star formation time scale t* ≈ 1-5 Gyr winds w≈1-3 • Our favorite model (see later): t*=3Gyr/w=1.5 Rencontres de Moriond

  12. Comoving stellar density: Ω*(z) • Ω* for the same parameters • IMF: Kroupa  50% of stars dead at z=0 • z=0: Observed Ω* compatible with CSFR constraints • z=3: same models predicts 3 times more stars than observed!? Problems in the model? In CSFR? In Ω*? Rencontres de Moriond

  13. Extragalactic Background Light IEBL=80 nW/m2/sr from Bernstein et al. 1999, Chary&Elbaz 2001, Fixsen et al. 1998 • Bolometric luminosity from Madau&Pozzetti (2000) • Similar constraints than Ω*(z=0) • IEBL(t*=3Gyr, w=1.5)=100 nW/m2/sr Rencontres de Moriond

  14. Comoving cold gas density: Ωcold(z) • Damped Lyman Alpha: dust corrected by Pei et al. 1999 • Constraints on the gas consumption time scale: t*/(w+1)≈1Gyr • Good agreement with our favorite model Rencontres de Moriond

  15. Individual average SFH • Heavens et al 2004: stellar population of 100000 galaxies (SDSS) • Large galaxies form stars earlier than small one • Fast decline of SFH for large galaxies at low z  AGN driven superwinds (AGN)? Rencontres de Moriond

  16. Conclusion • High resolution numerical simulations + simple model  baryon budget history in the hierarchical scenario • Cosmic rates implies: • t* ≈ 1-5 Gyr close to Kennicutt 1998 consumption time scale: <gas /SFR>=2Gyr • w≈1-3 close to efficiency inferred from Martin 99 outflows • Model overestimates Ω*(z=3). Solutions? IMF? • Individual average SFR seems to imply: • Our standard parameters for galaxies • Superwinds w≈10 in groups. AGN? • Next step: simulations with winds and metals Thank you for your attention and happy skiing! Rencontres de Moriond

More Related