1 / 22

专题三 : 带电粒子 ( 或带电体 ) 在复合场的运动问题

专题三 : 带电粒子 ( 或带电体 ) 在复合场的运动问题. 一、知识梳理:. 1 、分析思想: 带电粒子在复合场(重力场、电场、磁场)中的运动问题,是力、电知识的综合应用问题。其分析方法和力学问题的分析方法类似,不同之处是多了电场力和磁场力,因此要注意这两个力的特性在改变运动状态中所起的作用。. 2 、带电粒子在复合场中的运动情况: 1 )直线运动: 常见的情况有: ①洛伦兹力为零(即 V 与 B 平行),重力与电场力平衡时,做匀速直线运动;合外力恒定时做匀变速直线运动。 ②洛伦兹力与 V 垂直,且与重力和电场力的合力(或其中的一个力)平衡,做匀速直线运动。

Télécharger la présentation

专题三 : 带电粒子 ( 或带电体 ) 在复合场的运动问题

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 专题三:带电粒子(或带电体)在复合场的运动问题专题三:带电粒子(或带电体)在复合场的运动问题

  2. 一、知识梳理: • 1、分析思想: • 带电粒子在复合场(重力场、电场、磁场)中的运动问题,是力、电知识的综合应用问题。其分析方法和力学问题的分析方法类似,不同之处是多了电场力和磁场力,因此要注意这两个力的特性在改变运动状态中所起的作用。

  3. 2、带电粒子在复合场中的运动情况: • 1)直线运动: • 常见的情况有: • ①洛伦兹力为零(即V与B平行),重力与电场力平衡时,做匀速直线运动;合外力恒定时做匀变速直线运动。 • ②洛伦兹力与V垂直,且与重力和电场力的合力(或其中的一个力)平衡,做匀速直线运动。 • 2)圆周运动: • 当带电粒子所受到合外力充当向心力时,带电粒子做匀速圆周运动。此时一般情况下是重力恰好与电场力平衡,洛伦兹力充当向心力。 • 3)一般的曲线运动: • 当带电粒子所受的合力在大小、方向均不断变化时,则粒子将做非匀变速曲线运动。

  4. 3、注意的问题: • 1)磁偏转与电偏转的区别: • 解题中可能存在磁或电的单独偏转,也可能是磁电引起的综合偏转。 • 2)有形约束运动和无形约束运动的区别: • 注意带电粒子运动的空间是否存在轨道、平面、轻绳或轻杆等有形的约束而做一种受迫的运动。还是只受到复合场的无形作用,在有界或无界的空间做一种自由的运动。 • 3)场力做功的不同特点: • 重力和电场力会对带电粒子做功且与其运动路径无关,只与初、末位置有关。而洛伦兹力对带电粒子永不做功。粒子的动能、重力势能和电势能都会发生相应的变化,所以从能量的角度来研究粒子的运动是解题的重要思路!

  5. 二、方法点拔: • 1、无形约束的自由运动问题: • 解题中可能存在磁或电的单独偏转,也可能是磁电引起的综合偏转。 • 例1:如图所示。在x轴上有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y铀负方向的匀强电场,场强为E。一质最为m,电荷量为q的粒子从坐标原点。沿着y轴正方向射出。射出之后,第3次到达X轴时,它与点O的距离为L,求此粒子射出时的速度v和运动的总路程s,(重力不计)。

  6. 【正确解答】 •   粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速直线运动。画出粒子运动的过程草图10-19。根据这张图可知粒子在磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入磁场。这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个周期后第三次通过x轴。 • Bqv=mv2/R • 在电场中:粒子在电场中每一次的位移是l • 第3次到达x轴时,粒子运动的总路程为一个圆周和两个位移的长度之和。

  7. 例2:设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是: [ ] ABC A.这离子必带正电荷 B.A点和B点位于同一高度 C.离子在C点时速度最大 D.离子到达B点时,将沿原曲线返回A点

  8. 【正确解答】 •   (1)平行板间电场方向向下,离子由A点静止释放后在电场力的作用下是向下运动,可见电场力一定向下,所以离子必带正电荷,选A。 •   (2)离子具有速度后,它就在向下的电场力F及总与速度心垂直并不断改变方向的洛仑兹力f作用下沿ACB曲线运动,因洛仑兹力不做功,电场力做功等于动能的变化,而离子到达B点时的速度为零,所以从A到B电场力所做正功与负功加起来为零。这说明离子在电场中的B点与A点的电势能相等,即B点与A点位于同一高度,选B。 •   (3)因C点为轨道最低点,离子从A运动到C电场力做功最多,C点具有的动能最多,所以离子在C点速度最大,选C。 •   (4)只要将离子在B点的状态与A点进行比较,就可以发现它们的状态(速度为零,电势能相等)相同,如果右侧仍有同样的电场和磁场的叠加区域,离子就将在B之右侧重现前面的曲线运动,因此,离子是不可能沿原曲线返回A点的。 •   故选A,B,C为正确答案。 • 【小结】 •   初速度和加速度决定物体的运动情况。在力学部分绝大部分的习题所涉及的外力是恒力。加速度大小方向都不变。只要判断初始时刻加速度与初速度的关系,就可以判断物体以后的运动。本题中由于洛仑兹力的方向总垂直于速度方向,使得洛仑兹力与电场力的矢量和总在变化。所以只做一次分析就武断地下结论,必然会把原来力学中的结论照搬到这里,出现生搬硬套的错误。

  9. 例3:如图为方向相互垂直的匀强电场和匀强磁场区域。电场强度为E,磁感强度为B,复合场的水平宽度为d,竖直方向足够长。现有一束电量为+q、质量为m初速度各不相同的粒子沿电场方向进入场区,求能逸出场区的粒子的动能增量例3:如图为方向相互垂直的匀强电场和匀强磁场区域。电场强度为E,磁感强度为B,复合场的水平宽度为d,竖直方向足够长。现有一束电量为+q、质量为m初速度各不相同的粒子沿电场方向进入场区,求能逸出场区的粒子的动能增量 • ΔEk为多少? 从粒子射入左边界到从右边界逸出,电场力做功使粒子的动能发生变化。根据动能定理有: Eqd =ΔEk 动能增量ΔEk=0

  10. 【正确解答】 •   由于带电粒子在磁场中受到洛仑兹力是与粒子运动方向垂直的。它只能使速度方向发生变。粒子速度越大,方向变化越快。因此当一束初速度不同、电量为+q、质量为m的带电粒子射入电场中,将发生不同程度的偏转。有些粒子虽发生偏转,但仍能从入射界面的对面逸出场区(同错解答案);有些粒子将留在场区内运动;有些粒子将折回入射面并从入射面逸出场区。由于洛仑兹力不会使粒子速度大小发生变化,故逸出场区的粒子的动能增量等于电场力功。对于那些折回入射面的粒子电场力功为零,其动能不变,动能增量ΔEk=0。 • 【小结】 •   本题考查带电粒子在磁场中的运动和能量变化。这道题计算量很小,要求对动能定理、电场力、磁场力等基本概念、基本规律有比较深入的理解,而且能够与题目所给的带电粒子的运动相结合才能求得解答。在结合题意分析时,特别要注意对关键词语的分析。本题中:“逸出场区”的准确含义是从任何一个边界逸出场区均可。

  11. 2、有形约束的受迫运动问题: • 例4: 如图所示,空中有水平向右的匀强电场和垂直于纸面向外的匀强磁场,质量为m,带电量为+q的滑块沿水平向右做匀速直线运动,滑块和水平面间的动摩擦因数为μ,滑块与墙碰撞后速度为原来的一半。滑块返回时,去掉了电场,恰好也做匀速直线运动,求原来电场强度的大小。

  12. 【正确解答】 •   碰撞前,粒子做匀速运动,Eq=μ(mg+Bqv)。返回时无电场力作用仍做匀速运动,水平方向无外力,摩擦力f=0,所以N=0竖直方向上有  • 【小结】 • 实践证明,急于列式解题而忽略过程分析必然要犯经验主义的错误。分析好大有益。

  13. 例5: 质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大, 求运动过程中小球的最大加速度和最大速度。

  14. 解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。 • 若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为; • 摩擦力等于重力时速度最大,为。

  15. F1 V F2 • 3、带电粒子在实际问题中的应用: 1)速度选择器(与入射方向有关,与带电性质无关)

  16. O Q P U • 2)质谱仪(分离同位素,q同m不同的粒子)

  17. 出 • 3)回旋加速器 电场加速,磁场偏转。交流电压(交变电场)加速,两周期相等,加速极限受回旋半径限制。

  18. A 等离子体 • 4)磁流体发电机

  19. G R V d 导电液体 V 金属管道 • 5)电磁流量计

  20. a O O’ b • 例6:(06年全国高考)图中为一“滤速器”装置的示意图。a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间。为了选取具有某种特定速率的电子,可在间a、b加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO’运动,由O’射出,不计重力作用。可能达到上述目的的办法是( ) • A.使a板电势高于b板,磁场方向垂直纸面向里 • B.使a板电势低于b板,磁场方向垂直纸面向里 • C.使a板电势高于b板,磁场方向垂直纸面向外 • D.使a板电势低于b板,磁场方向垂直纸面向外 AD

  21. 例7:磁流体推进船的动力来源于电流与磁场间的相互作用。图1是在平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。如图2所示,通道尺寸a=2.0m、b=0.15m、c=0.10m。工作时,在通道内沿z轴正方向加B=8.0T的匀强磁场;沿x轴负方向加匀强电场,使两金属板间的电压U=99.6V;海水沿y轴方向流过通道。已知海水的电阻率=0.20Ω·m。例7:磁流体推进船的动力来源于电流与磁场间的相互作用。图1是在平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。如图2所示,通道尺寸a=2.0m、b=0.15m、c=0.10m。工作时,在通道内沿z轴正方向加B=8.0T的匀强磁场;沿x轴负方向加匀强电场,使两金属板间的电压U=99.6V;海水沿y轴方向流过通道。已知海水的电阻率=0.20Ω·m。 • (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向 • (2)船以=5.0m/s的速度匀速前进。若以船为参照物,海水以5.0m/s的速率涌入进水口,由于通道的截面积小于进水口的截面积,在通道内海水速率增加到vd=8.0m/s。求此时两金属板间的感应电动势U感 • (3)船行驶时,通道中海水两侧的电压按 • U’=U-U感计算,海水受到电磁力的80%可以转化为对船的推力。当船以5.0m/s的速度匀速前进时,求海水推力的功率。

  22. 对海水推力的方向沿y轴正方向(向右) • P = Fvs = 80% F2 vs=2880W

More Related