210 likes | 304 Vues
This report evaluates the privacy aspects of Location-Based Services (LBS) in dynamic contexts, focusing on the architecture, implementation, algorithm modules, reciprocity module, and experimental results. It discusses challenges with the reciprocity property and proposes refinement algorithms to enhance user privacy. The experiment details the Java-based implementation and system configuration used, providing insights on improving user privacy with the nnASR algorithm and reciprocity module performance.
E N D
Evaluating LBS Privacy In DYNAMIC CONTEXT Implement report (12/05/2011)
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Implemented algorithms • Nearest-neighbor ASR (nnASR) • R-Tree Index • Different results when run many times with same input • Interval Cloaking • Quad-Tree index • Same input – same result • Grid • Sorted List • Same input – same result
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Checking reciprocity module • Input: issuer id + MBR • Output: number of users which have same MBR – real k • Algorithm: • Set k_anonymity = 0 • Run anonymizing algorithm to get AS • For each id ui in AS, run algorithm to get ASi • If AS = ASi then k_anonymity = k_anonymity + 1 • If k_anonymity >= k, return true • Else return false
Problem with reciprocity property • An assumption about anonymizing algorithm: • In snapshot, same input same result • Problem • Algorithm: same input different results • Example: nnASR I I 1st time 2nd time
nnASR: an attack proposed • Assumption • K is known • Idea • Find the chosen users • Its k-nn must be in or be the original MBR • Forecast the candidate issuer • For each user in original MBR (exclude chosen users) • Check whether its k-nninclude one of chosen users & expand MBR is equal to original MBR • True candidate
Illustration • k = 4 Candidate
Illustration • k = 4 Candidate
Refine algorithm • Just refine value k of request • Brute-force: • Increase k until request satisfies reciprocity property • Suitable for algorithms which: • Same input same result • Problem: • nnASR
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Experiment • Implement the algorithms in Java • System configuration: • OS: Window 7 • Processor: AMD Phenom II X4 B40 3.0Ghz • RAM: 2GB • Data: users’ locations in Sanfrancisco with 17000 users • Run 500 tests and take the average to get output values
Experiment Average size of the generalized region
Conclusion • nnASRalgorithm: how to improve privacy of user? • The performance of reciprocity module