240 likes | 344 Vues
Equilibrium of Heterogeneous Protocols. Steven Low CS, EE netlab. CALTECH .edu with A. Tang, J. Wang, Clatech M. Chiang, Princeton. x. y. R. F 1. G 1. Network. AQM. TCP. G L. F N. q. p. R T. Reno, Vegas. IP routing. DT, RED, …. Network model. Duality model. TCP-AQM:.
E N D
Equilibrium of Heterogeneous Protocols Steven Low CS, EE netlab.CALTECH.edu with A. Tang, J. Wang, Clatech M. Chiang, Princeton
x y R F1 G1 Network AQM TCP GL FN q p RT Reno, Vegas IP routing DT, RED, … Network model
Duality model • TCP-AQM: • Equilibrium (x*,p*) primal-dual optimal: • Fdetermines utility function U • Gdetermines complementary slackness condition • p* are Lagrange multipliers Uniqueness of equilibrium • x* is unique when U is strictly concave • p* is unique when R has full row rank
Duality model • TCP-AQM: • Equilibrium (x*,p*) primal-dual optimal: • Fdetermines utility function U • Gdetermines complementary slackness condition • p* are Lagrange multipliers The underlying concave program also leads to simple dynamic behavior
a = 1 : Vegas, FAST, STCP • a = 1.2: HSTCP (homogeneous sources) • a = 2 : Reno (homogeneous sources) • a = infinity: XCP (single link only) Duality model • Equilibrium (x*,p*) primal-dual optimal: (Mo & Walrand 00)
Congestion control x y R F1 G1 Network AQM TCP FN GL q p RT same price for all sources
Heterogeneous protocols x y R F1 G1 Network AQM TCP FN GL q p RT Heterogeneous prices for type j sources
Multiple equilibria: multiple constraint sets eq 2 eq 1 Tang, Wang, Hegde, Low, Telecom Systems, 2005
Multiple equilibria: multiple constraint sets eq 2 eq 3 (unstable) eq 1 Tang, Wang, Hegde, Low, Telecom Systems, 2005
Multiple equilibria: single constraint sets 1 1 • Smallest example for multiple equilibria • Single constraint set but infinitely many equilibria • J=1: prices are non-unique but rates are unique • J>1: prices and rates are both non-unique
Multi-protocol: J>1 • TCP-AQM equilibrium p: Duality model no longer applies ! • pl can no longer serve as Lagrange multiplier
Multi-protocol: J>1 • TCP-AQM equilibrium p: Need to re-examine all issues • Equilibrium: exists? unique? efficient? fair? • Dynamics: stable? limit cycle? chaotic? • Practical networks: typical behavior? design guidelines?
Multi-protocol • Non-unique bottleneck sets • Non-unique rates & prices for each B.S. • always odd • not all stable • uniqueness conditions Summary: equilibrium structure Uni-protocol • Unique bottleneck set • Unique rates & prices
Multi-protocol: J>1 • TCP-AQM equilibrium p: • Simpler notation: equilibrium p iff
Multi-protocol: J>1 • Linearized gradient projection algorithm:
Results: existence of equilibrium • Equilibrium p always exists despite lack of underlying utility maximization • Generally non-unique • Network with unique bottleneck set but uncountably many equilibria • Network with non-unique bottleneck sets each having unique equilibrium
Results: regular networks • Regular networks: all equilibria p are locally unique, i.e.
Results: regular networks • Regular networks: all equilibria p are locally unique Theorem(Tang, Wang, Low, Chiang, Infocom 2005) • Almost all networks are regular • Regular networks have finitelymany and odd number of equilibria (e.g. 1) Proof: Sard’s Theorem and Index Theorem
Results: regular networks Proof idea: • Sard’s Theorem: critical value of cont diff functions over open set has measure zero • Apply to y(p) = c on each bottleneck set regularity • Compact equilibrium set finiteness
Results: regular networks Proof idea: • Poincare-Hopf Index Theorem: if there exists a vector field s.t. dv/dp non-singular, then • Gradient projection algorithm defines such a vector field • Index theorem implies odd #equilibria
Results: global uniqueness • Linearized gradient projection algorithm: Theorem(Tang, Wang, Low, Chiang, Infocom 2005) • If all equilibria p all locally stable, then it is globally unique Proof idea: • For all equilibrium p:
Results: global uniqueness Theorem(Tang, Wang, Low, Chiang, Infocom 2005) • For J=1, equilibrium p is globally unique if R is full rank (Mo & Walrand ToN 2000) • For J>1, equilibrium p is globally unique if J(p) is `negative definite’ over a certain set
Results: global uniqueness Theorem(Tang, Wang, Low, Chiang, Infocom 2005) • If price mapping functions mlj are `similar’, then equilibrium p is globally unique • If price mapping functions mlj are linear and link-independent, then equilibrium p is globally unique
Multi-protocol • Non-unique bottleneck sets • Non-unique rates & prices for each B.S. • always odd • not all stable • uniqueness conditions Summary: equilibrium structure Uni-protocol • Unique bottleneck set • Unique rates & prices