380 likes | 491 Vues
This paper discusses advancements in photodetector readout systems developed at University of Hawaii and SLAC. Key highlights include the introduction of cost-effective, compact, and energy-efficient technologies for precision timing detection, including FPGA-based readout options, and high-speed sampling up to 6 GSa/s. The work emphasizes innovative concepts like the PROMPT system, various ASIC and ADC performance evaluations, and effective strategies to mitigate noise and maximize modularity, all aimed at enhancing measurement accuracy in high-channel-count applications.
E N D
Compact, low-power and (deadtimeless) high timing precisionphotodetector readoutG. Varner and L. Ruckman [University of Hawaii]J. Va’vra and J. Schwiening [SLAC] PD '07 Kobe -- G. Varrner 29-JUN-07 • Progress in expensive PD recording • Precision timing detection • PROMPT concept • T-492 beam test • Next Generation readout concepts
Inexpensive Options: FPGA based readout QDC Performance PD '07 Kobe -- G. Varrner J. Instr. 1 P07001 (2006) TDC Performance ~0.37ns ASIC: ATWD, DRS,others (KamLAND, IceCube, MEG, MAGIC)
A Different kind of g Detector PD '07 Kobe -- G. Varrner • 20-30cm vs. 200-800nm (bandwidth 200-1200 MHz) • Completely solar powered (tight demands on power) • 324 chan. @ 2.6GSa/s ~320ps Measured ~7m Antarctic Impulsive Transient Antenna (ANITA)
Large Analog Bandwidth Recorder and Digitizer with Ordered Readout [LABRADOR] PD '07 Kobe -- G. Varrner • Common STOP acquisition • 3.2 x 2.9 mm • Conversion in 21ms (all 2340 samples) • Data transfer takes 80ms • Ready for next event in ~50ms Straight Shot RF inputs • Switched Capacitor Array (SCA) • Massively parallel Wilkinson ADC array 8+1 chan. * 256+4 samples Random access:
LAB3 Architecture Details PD '07 Kobe -- G. Varrner • No missing codes • Linearity as good as can make ramp • Can bracket range of interest
LABRADOR sampling & linearity 12-bit ADC PD '07 Kobe -- G. Varrner • Excellent linearity • Sampling rates up to 4 GSa/s with voltage overdrive 2.6GSa/s
Bandwidth Evaluation PD '07 Kobe -- G. Varrner Transient Impulse FFT Difference f3dB ~> 1.2GHz Frequency [GHz]
PD '07 Kobe -- G. Varrner Jiwoo Nam UC Irvine
Finer Calibration 600MHz Clock PD '07 Kobe -- G. Varrner Estimated Limit
High Speed sampling PD '07 Kobe -- G. Varrner
Precision Timing Recording Options PD '07 Kobe -- G. Varrner • Constant Fraction Discriminator + Multi-Hit TDC Without INL compensation • Good performance, but • CFD not compact, rate dependent (SLAC 16 channel card is 9U) • High-power, potentially noisy if inside detector • Buffer depth limitations (already an issue for TOF upgrade) Measurements from ALICE-TOF + After INL compensation
Exploration Direction • For high channel counts, prefer to do the measurement at the photodetector (avoids cables which take up space and leads to dispersion for fast timing signals) • Noise (interference) inside detector • No fast discriminators (power/heat) • Precision timing waveform sampling • Explore different photo-detectors • Highly integrated detector & electronics • Lower gain • Magnetic field robustness • Modular, cost effective in large volumes (Advanced focusing DIRC could be 250,000 channels) PD '07 Kobe -- G. Varrner
Precision Timing Motivation (1) PD '07 Kobe -- G. Varrner Jerry Va’vra
Motivation (2) --Chromatic Correction PD '07 Kobe -- G. Varrner
Blank slide PD '07 Kobe -- G. Varrner Set-up in End Station A at SLAC, where did ANITA calibration
Blank slide PD '07 Kobe -- G. Varrner 7 x 64 PMT channels (448 total), not enough SLAC electronics, proposal to instrument some with new electronics (prototyped under DOE Advanced Detector Research award)
UH Prototype Readout Chain PD '07 Kobe -- G. Varrner G = 5x105 single p.e. ~1mV
64-channel Amplifier Stackbased on RF amplifiers (cheap, high BW) PD '07 Kobe -- G. Varrner Ribbon cable (differential analog) output Within MCP profile
Integration Test Results PD '07 Kobe -- G. Varrner Scanning Test Set-up: Measured noise ~4mVrms Voltage Gain ~200 High bandwidth Raw signal
16 BLAB1 ASICs Differential inputs from amp boards PD '07 Kobe -- G. Varrner Processed hit times via CAMAC Full waveforms over USB2
Buffered LABRADOR (BLAB1) ASIC PD '07 Kobe -- G. Varrner • 64k samples deep • Multi-MSa/s to Multi-GSa/s • 12-64us to form Global trigger 3mm x 2.8mm, TSMC 0.25um
Buffered LABRADOR (BLAB1) ASIC PD '07 Kobe -- G. Varrner Measured Noise 1.8V dynamic range • 10 real bits of dynamic range 1.4mV
BLAB1 Analog Bandwidth PD '07 Kobe -- G. Varrner • A few fixes (lower power, higher BW) • Multi-channel BLAB2 -3dB ~300MHz
BLAB1 Sampling Speed Can store 13us at 5GSa/s (before wrapping around) PD '07 Kobe -- G. Varrner Single sample: 200/SQRT(12) ~ 58ps But, have Complete Waveform Information 200ps/sample
125MHz sine wave Pre-calibration PD '07 Kobe -- G. Varrner 6GSa/s
400MHz sine wave Calibration (1) PD '07 Kobe -- G. Varrner 6GSa/s Linear variation across chip Due to IR drop in feed voltage (can be improved) Extracted Period [ns] Storage Cell Number
6GSa/s Calibration (2) 400MHz sine wave PD '07 Kobe -- G. Varrner After basic linearity and bin-by-bin correction ~11ps intrinsic (~8ps possible) 15ps Linearity only Extracted Period [ns]
Bench Test timing ~30ns pulse pair PD '07 Kobe -- G. Varrner 6GSa/s ~27ps for two edges ~20ps for each edge ~40ps for PMT like Signals (working on algorithm)
Temperature Dependence PD '07 Kobe -- G. Varrner Sample aperature (172ps = 5.8GSa/s) 6GSa/s 0.2%/degree C (can correct) Matches SPICE simulation
Typical single p.e. signal [Burle] Overshoot/ringing PD '07 Kobe -- G. Varrner Due to Higher bandwidth, “warts” of signal appear
Measured Burle Cross-talk PD '07 Kobe -- G. Varrner With higher bandwidth, nature of ringing well seen. By measuring waveforms, some hope to correct Electronics only: <1% crosstalk Raw signal
Interleaved Operation PD '07 Kobe -- G. Varrner • Single shot! • uncalibrated • room for improvement • push BW higher LARC ASIC: 64 chan @ 5 GSa/s = 384GSa/s Streak camera type applications – ps timing
Vacuum MCP-PMT Issues • lower Q.E., fill factor • High voltage operation, longevity • High density packing • Magnetic field effects • Irreducible Manufacturing Costs PD '07 Kobe -- G. Varrner How to get to a large system? • SBIR with LightSpin Technologies • Proprietary Solid-State MCP demonstrator (1 x 1024) • No HV, high Q.E. (200 – 900nm!!) • Lower dark count rate than Si-PM • Mate with BLAB variant, determine timing resolution
f-DIRC Array Concept PD '07 Kobe -- G. Varrner Many k Photodetector channels ASIC Single Module: (side-view) SiPMs/APDs Carrier Socket Tiled Array Readout Board
Summary PD '07 Kobe -- G. Varrner • High Precision Timing Results • Initial results promising • No fundamental limit • Practical issues important (T0) • Plans: • T-492 test of f-DIRC (ESA SLAC) • LARC, BLAB2 ASICs • Direct integration test with MPPC/SS-MCP • Push PD technology • Future: • Low-costs in volume • Integrate amplifier for higher gain • Explore limits of analog BW/sampling
Backup slide -- cables! PD '07 Kobe -- G. Varrner
Blank slide PD '07 Kobe -- G. Varrner