1 / 38

Reynier Peletier

Reynier Peletier. Secular Evolution and Stellar Populations. Reynier Peletier Kapteyn Institute Groningen. Secular evolution and stellar populations: a critical look at early-type bulges:. Some colour maps of early-type bulges The Ca II IR triplet in early-type bulges

lorant
Télécharger la présentation

Reynier Peletier

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reynier Peletier Secular Evolution and Stellar Populations Reynier Peletier Kapteyn Institute Groningen

  2. Secular evolution and stellar populations: a critical look at early-type bulges: • Some colour maps of early-type bulges • The Ca II IR triplet in early-type bulges • Bulges on the fundamental plane of early-type galaxies • SAURON line strength maps of early-type bulges Collaborators: (1) M. Balcells; (2 and 3) M. Balcells, J. Falcón-Barroso, A. Vazdekis; (4) J. Falcón-Barroso, K. Fathi, E. Emsellem, M. Bureau, H. Kuntschner, R.L. Davies + rest of the SAURON team.

  3. 1. What do simple colour maps show? • A sample of highly inclined (i>50º) nearby galaxies to look at pure bulges with no disk contamination. • Photometry of 45 nearby bulges (Balcells & Peletier 1994) (Andredakis et al. 1995) (Peletier & Balcells 1997) (Balcells et al. 2003, 2004a,b) • Kinematics of 20 nearby bulges (Falcón-Barroso et al. 2003b) • Stellar Populations of 20 bulges (Peletier et al. 1999) (Falcón-Barroso et al. 2002) (Falcón-Barroso et al. 2003a)

  4. Can we see the peanut-shaped bulge in the color maps? NGC 5965 – a galaxy with a peanut-shaped bulge (Sb) R-K colour map (Peletier & Balcells 1997) U-R colour map (Peletier & Balcells 1997)

  5. What do optical-infrared colours tell us? NGC 5838 B-I (field size 5''x5'') HST colour-colour maps of 20 S0-Sbc bulges Red: Central values Blue: Values at 0.5 Re. ==> Centers are dusty, and so contain young st. Populations (Peletier et al. 1999)

  6. From the optical-infrared colour maps we infer: • These early-type bulges are predominantly old (~10 Gyr) with relatively small scatter (2 Gyr) • Bulge and inner disk populations are very similar (Peletier & Balcells 1996, Terndrup et al. 1994) • One does not see the bulge (classical nor peanut) in the colour maps, indicating also that there are no shocks etc. in the corners of the peanut that cause star formation. • There is residual dust and star formation in the centers

  7. 2. Do stellar populations of bulges vary from those of ellipticals? The case of the Ca triplet. (Cenarro et al. 2001, 2002ab, Vazdekis et al. 2003, Saglia et al. 2002, Falcon-Barroso et al. 2003, Cenarro et al. 2003)

  8. New near-IR index definitions CaT, CaT*,PaT Advantages: • Specifically designed to ease problems in the definition of the continuum bands • Use all the S/N in the Ca triplet lines • Are not very sensitive to problems with sky subtraction (5 continuum bands). • Correct for Pa line contribution • Calibrated with the stellar library of Cenarro et al. (Cenarro et al. 2001a, 2001b, 2002)

  9. Discovery of a CaT* - σ relation for bulges (Falcon-Barroso et al. 2003) • Ca II anti-correlates with  • No dependence on aperture size or morphological type.

  10. The CaT* - σ relation is the same for bulges as for ellipticals. • Bulges of Spiral galaxies (filled symbols) follow the relation defined by elliptical galaxies (from Cenarro et al. 2003, open circles).

  11. How do we explain that CaT* decreases for larger galaxies?

  12. For metallicities > -0.5 CaT* is virtually independent of metallicity. GLOBULAR CLUSTERS Model prediction estimates Metallicity scale of Armandroff & Zinn (1988) [M/H] Vazdekis et al. (2003)

  13. [M/H] But CaT* does depend on IMF-slope! A G E IMF slope

  14. The CaT* measurements in bulges can be explained • If [Ca/Fe] < 0 • If Ca is depleted onto grains. This is not very likely, since the CaT* - σ relation for ellipticals (with less dust) is the same as for bulges. • If the largest galaxies have IMFs that are biased towards low mass stars.

  15. 3. Where do bulges fall on the Fundamental Plane of early-type galaxies? (Falcon-Barroso et al. 2002) (B92: Bender et al 1992, J96: JØrgensen et al. 1996)

  16. Bulges on the Fundamental Plane in the K-band (P98: Pahre et al. 1998)

  17. The position of bulges on the FP shows that these early-type bulges have the same age on the average as elliptical galaxies in clusters.

  18. What does the Mg2 – σ relation say about the ages of these bulges?

  19. According to the Mg2-σ relation these bulges are old. However, there are other bulges that are apparently younger (e.g. most of those of Prugniel et al. 2001).

  20. Telescope William Herschel (4.2 m) Field of view 33 x 41 arcsec Sampling 0.94 x 0.94 arcsec Lenslets 1577 (of which 146 sky) Wavelength range 4810-5350 Å Spectral features H, [OIII], Mgb, Fe5270 Instrumental resolution ~ 110 km/s Total Efficiency 14.7 % Commissioned February 1999 (at WHT) 4. Absorption line strength maps of Early-type bulges with SAURON

  21. The SAURON Sample: 24 E’s, 24 S0’s, 24 Sa’s. • E • S0 • Sa The SAURON sample is a representative sample of optically selected ellipticals, S0’s and spirals. Here I will show some absorption line strength maps for the 24 Sa galaxies.

  22. Separating gas and stars:

  23. The system of line indices (Lick)

  24. Some characteristic cases:

  25. Central Star Formation: (SB(r)a: ) I Mgb Hβ Vstars Vgas Fe 5015

  26. Stellar Populations Ignoring the Bar: (SB(s)0-) I Mgb Hβ Vgas Vstars Fe 5015

  27. A Central Star Formation Ring: (SB(rs)a) I Mgb Hβ Vgas Vstars Fe 5015

  28. What can we say about secular evolution from stellar populations? Bulges of early-type spirals (S0-Sb) look almost like elliptical galaxies: • Similarities: • B-I; I-H colours similar to ellipticals of the same size. Old ages. • Bulges on the FP of ellipticals. • Same Mg2-σ and CaT*-σ relation • No features in colour maps • Some central (SF) activity • Differences: • Sérsic index n lower (1-2.5 vs. 4)

  29. BUT! • Bulges and inner disks are indistinguishable in the colour maps • Bulges of later types are different: • Star clusters (nuclear and non-nuclear) • Presence of Star Formation (in Rings etc.) • Surface brightness profiles even shallower (n~1) Clearly, later type bulges are evolving as we speak. About the details, however, we know very little.

  30. First Light of VISIR • VISIR is a mid-infrared imager and spectrograph, built by CEA-Saclay (France) and ASTRON (Dwingeloo) for ESO’s VLT. It has the following capabilities: • Diffraction limited imaging from 5-28 micron (0.2’’ at 8 micron!) • Spectroscopy at resolution 300, 3000 and 30000. • VISIR obtained first light on April 30, 2004.

  31. Some Early VISIR-Results Galactic center at 8.6 (PAH), 12.8 (NeII) and 19.5 micron.

  32. The Ant Nebula HST VISIR – 12.8 micron, Field of View 33x33’’ VISIR: NeII line at 12.8 micron, x-v diagram; scale 33’’ x 700 km/s

More Related