320 likes | 421 Vues
Learn about Scheme as a meta-language for coding interpreters with "clean" semantics, combining LISP and ALGOL, static scoping, and more. Master expressions, variables, procedure calls, and data types in L2Scm. Dive into identifiers, procedure calls, special forms, and data types. Explore symbols, lists, pairs, and vectors for a comprehensive understanding of Scheme.
E N D
Introduction to Scheme L2Scm
Scheme • Meta-language for coding interpreters • “clean” semantics • Scheme = LISP + ALGOL • simple uniform syntax; symbols and lists • block structure; static scoping • expression : evaluated for its value • statement : evaluated for its effect • Dynamic type checking • flexible but inefficient (rapid prototyping) L2Scm
Expressions Literals Variables Procedure calls • Literals • numerals(2), strings(“abc”), boolean(#t), etc. • Variables • Identifier represents a variable. Variable reference denotes the value of its binding. x 5 ref L2Scm
Expressible vs Denotable values • Booleans are expressible in (early) FORTRAN, but not denotable. • Functions are denotable in Pascal/C, but are not expressible. • In (functional subset of) Scheme, both value spaces are identical. • In (full) Scheme, variable references (pointers) are denotable but not expressible. L2Scm
Scheme Identifiers • E.g., y,x5,+,two+two,zero?, etc • (Illegal) 5x,y)2,ab c, etc • Identifiers • reserved keywords • variables • pre-defined functions/constants • ordinary • functions = procedures L2Scm
Procedure Call (application) • (operator-expr operand-expr ...) • prefix expression (proc/op arg1 arg2 arg3 ...) • Order of evaluation of the sub-expressions is “explicitly” left unspecified by Scheme. • cf. C is silent about it. • cf. Java specifies a left to right processing. (+ x (p 2 3)) ((f 2 3) 5 6) L2Scm
Special Forms • Definition • (define <var> <expr>) > (define false #f) • Conditional • (if <test> <then> <else>) > (if (zero? 5) 0 #t) > (if '() 'emptyList'never) emptyList L2Scm
Data Types • values, operations, canonical representation • Type-checking • static : compile-time : efficient • dynamic : run-time : flexible • numbers: +, -, *, number?, =, etc. • booleans: #t, #f, boolean?, etc. • strings: string?, string->list, etc. L2Scm
Symbols • Identifiers treated as primitive values. • Distinct from identifiers that name variables in the program text. • Distinct from strings (sequence of characters). • Primitive operations quote symbol? • Facilitates meta-programming L2Scm
Lists • Ordered sequence of elements of arbitrary types (Heterogeneous) • operations • car, cdr, cons, null?, ... • list, append, ... • cadr, caadr, caddddr, … (cadar X) = (car (cdr (car X))) L2Scm
Pairs: Expression, Internal Representation and Print form (cons 'a 'b) (cons 'a (cons 'b '()) ) = (a . b) b a = (a . (b . ()) ) = (a b) () a b L2Scm
Domain Equations for defining S-Expressions and Lists Sexpr = Atoms U SexprXSexpr List = () U SexprXList L2Scm
Equivalence : Syntactic vs Semantic (eq? (cons 3 '()) (cons 3 '())) #f (define a (cons 3 '())) (define b (cons 3 '())) (eq? a b) #f (define c a) (eq? a c) #t L2Scm
Equivalence : Syntactic vs Semantic (equal? (cons 3 '()) (cons 3 '())) #t (equal? (make-vector 5 'a) (make-vector 5 'a)) #t (equal? (lambda(x)x) (lambda(y)y)) #f Formallyunspecified L2Scm
Vectors • Both records and arrays provide random access to components. However, records are heterogeneous, while arrays are homogeneous. • Vectors are heterogeneous structures that provide random access to components using a computable index. L2Scm
Constructors and accessors (define v (vector 1 (+ 1 2))) #(1 3) (vector-ref v 0) 1 (vector-length v) 2 • Index is 0-based. L2Scm
Procedures • In Scheme, procedures are first-class objects. That is, they may be (i) passed to procedures or (ii) returned from procedures or (iii) stored in a data structure. (procedure? append) #t (if (procedure? 3) car cdr) #<procedure> L2Scm
(( (if (procedure? procedure?) car cdr) (cons cdr car)) '(list append)) = ( (car (cons cdr car)) '(list append)) = (cdr '(list append)) = (append) L2Scm
Apply-function (apply cons '( x (y z))) = (cons 'x '(y z)) = (x y z) (apply f '(a1 a2 ... an)) = (f 'a1 'a2 ... 'an) (apply <func> <list-of-args>) L2Scm
Apply-function • Apply-function is not compelling if the function is of fixed arity and statically known. • Apply-function is indispensable if we wish to define variable arity function or the function will be computed dynamically. • Apply-function enables us to unify functions of different arities, and is an important component of an interpreter. L2Scm
(apply apply (list procedure? (list apply))) = (apply apply [proc?-fn [ apply-fn ] ] ) = (applyproc-fn [apply-fn] ) = (procedure? apply) = #t L2Scm
Anonymous Functions (lambda<formals-list> <body-expr>) E.g., ((lambda (n) (+ n 2)) (+ 1 4) ) = 7 • Evaluate actual argument expressions • Bind these values to corresponding formals in formals-list • Evaluate body expression (static scoping) L2Scm
Variable Arity Procedures (+ 1 2 3) (append '(1 (p q)) '() '(a b)) (list 1.2 3/4 5) (lambda<formal> <body>) • <formal> is bound to the list of actual argument values supplied in a call. L2Scm
(define mul (lambda x (if (null? x) 1 (* (car x) (applymul (cdrx)) ) )) ; 1 is identity w.r.t * ); assuming * is binary (mul 2 (+ 2 2) 5) L2Scm
Binding constructs in Scheme • define • binds value to a name. • l-function application • binds formal parameters to actual argument values. • let-constructs • introduces local bindings • let • let* • letrec L2Scm
let-construct ( let ( (var1 exp1) … (varn expn)) exp ) • exp1 to expn are evaluated in the surrounding context. • var1,…,varn are visible only in exp. • (let ( (x 2) (y 7) ) y) • 7 L2Scm
(let ( (x y) (y 7) ) y) • *error* “y” undefined • (define y 5) • (let ( (x y) (y 7) ) y) • 7 • (let ( (x y) (y 7) ) x) • 5 • (let ( (y 7) (x y) ) x) • 5 (not 7) L2Scm
(define y 5) • (let ( (y 7) (x y) ) x) • 5 • (let ( (y 7) ) (let ( (x y) ) x) ) • 7 • (let* ( (y 7) (x y) ) x) • 7 • let* abbreviates nested-lets. • Recursive and mutually recursive functions cannot be defined using let and let*. L2Scm
letrec-construct ( letrec ( (var1 exp1) … (varn expn)) exp ) • var1,…,varn are visible in exp1 to expn in addition to exp. • (letrec ( (x (lambda() y)) (y (lambda() x)) ) x ) L2Scm
letrec-construct • (letrec ( (f (lambda(n) (if (zero? n) 1 (f (- 1 n)) )) ) ) (f 5) ) • 1 • (letrec ( ( f (lambda () g) ) ( g 2) ) ( f ) ) • 2 L2Scm
boolean connectives (or test1 test2 … testn) (and test1 test2 … testn) • or and and are not Scheme procedures. • They use short circuit evaluation rather than traditional call-by-value. L2Scm
(cond (test1 exp1) (test2 exp2) … (testn expn) (else exp) ) (case key (keylist1 exp1) (keylist2 exp2) … (keylistn expn) (else exp) ) Branching constructs L2Scm