1 / 25

MEG/EEG Inverse problem and solutions In a Bayesian Framework

MEG/EEG Inverse problem and solutions In a Bayesian Framework. ?. Jérémie Mattout Lyon Neuroscience Research Centre. With many thanks to Karl Friston , Christophe Phillips, Rik Henson , Jean Daunizeau. EEG/MEG SPM course, Bruxelles, 2011. Talk’s Overview. SPM rationale

loyal
Télécharger la présentation

MEG/EEG Inverse problem and solutions In a Bayesian Framework

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MEG/EEG Inverse problem and solutions In a Bayesian Framework ? JérémieMattout Lyon Neuroscience Research Centre Withmanythanksto Karl Friston, Christophe Phillips, Rik Henson, Jean Daunizeau EEG/MEG SPM course, Bruxelles, 2011

  2. Talk’sOverview • SPM rationale • generativemodels • probabilisticframework • Twofoldinference: parameters & models • EEG/MEG inverse problem and SPM solution(s) • probabilisticgenerativemodels • Parameterinference and model comparison

  3. A word about generativemodels Model:"measure, standard" ; representation or object that enables to describe the functionning of a physical system or concept • A model enablesyou to: • Simulate data • Estimate (non-observables) parameters • Predict future observations • Test hypothesis / Compare models Physiological Observations Stimulations Behavioural Observations

  4. A word about generativemodels Model:"measure, standard" ; representation or object that enables to describe the functionning of a physical system or concept • A model enablesyou to: • Simulate data • Estimate (non-observables) parameters • Predict future observations • Test hypothesis / Compare models MEG Observations (Y) Y = f(,u) Sources/Network () Model m: f, , u Auditory-Visual Stimulations (u)

  5. • normalization: a=2 • marginalization: • conditioning : (Bayes rule) b=5 a=2 Probabilistic / Bayesianframework Probability of an event: - represented by real numbers - conforms to intuition - is consistent

  6. Probabilisticmodelling MEG Observations (Y) Y = f(,u) Sources/Network () Model m: f, , u Auditory-Visual Stimulations (u) Likelihood Posterior Prior Marginal or Evidence • Probabilisticmodellingenables: • To formalizemathematicallyourknowledge in a model m • To account for uncertainty • To makeinference on both model parameters and modelsthemselves

  7. A toyexample MEG Observations (Y) - One dipolar source withknown position and orientation. - Amplitude ? Measurment noise Linearf Y = L + ɛ Source amplitude Model m: Source gain vector Gaussian distributions or & Likelihood Prior

  8. A toyexample MEG Observations (Y) & Model m: Bayes rule Posterior

  9. y = f(x) x model evidence p(y|m) y=f(x) space of all data sets Hypothesistesting: model comparison Occam’srazor or principle of parsimony « complexity should not be assumed without necessity » Evidence

  10. • define the null and the alternative hypothesis H (or model m) in terms of priors, e.g.: space of all datasets • invert both generative models (obtain both model evidences) • apply decision rule, i.e.: if then reject H0 Hypothesistesting: model comparison Bayesian factor

  11. Posterior & Evidence inverse computation EEG/MEG inverse problem Probabilisticframing forward computation Likelihood & Prior

  12. EEG/MEG inverse problem Distributed/Imaging model Likelihood Parameters: (J,) Hypothesis m: distributed (linear) model, gain matrix L, gaussian distributions Source level Prior # sources Sensorlevel # sources IID (Minimum Norm) Maximum Smoothness (LORETA-like) # sensors # sensors

  13. EEG/MEG inverse problem Incorporating Multiple Constraints Likelihood Paramètres : (J,,) Hypothèses m: hierarchical model, operatorL + components C Prior Source (or sensor) level … Multiple Sparse Priors (MSP)

  14. Estimation procedure Expectation Maximization (EM) / Restricted Maximum Likelihood (ReML) / Free-Energyoptimization / ParametricEmpirical Bayes (PEB) Iterativescheme E-step M-step complexity accuracy

  15. Fi model Mi 3 1 2 Estimation procedure Model comparisonbased on the Free-energy At convergence

  16. At the end of the day Somesthesic data

  17. Seizure Example MEG - Epilepsy • Pharmacoresistive Epilepsy (surgery planning): • symptoms • PET + sIRM • SEEG • Could MEG replace or at least complement and guide SEEG ? Romain Bouet Julien Jung François Maugière 30s 120 patients : MEG provedverymuch informative in 85 patients

  18. Example MEG - Epilepsy Romain Bouet Julien Jung François Maugière Patient 1 : model comparison SEEG MEG (best model)

  19. Example MEG - Epilepsy Romain Bouet Julien Jung François Maugière Patient 2 : estimateddynamics temps SEEG lésion occipitale

  20. Conclusion • The SPM probabilistic inverse modelling approach enables to: • Estimate both parameters and hyperparameters from the data • Incorporate multiple priors of different nature • Estimate a full posterior distribution over model parameters • Estimate an approximation to the log-evidence (the free-energy) which enables model comparison based on the same data • Encompass multimodal fusion and group analysis gracefully • Note that SPM also include a flexible and convenient meshing tool, as well as beamforming solutions and a Bayesian ECD approach…

  21. Thankyoufor your attention

  22. EEG/MEG inverse problem Graphicalrepresentation Fixed Variable Data

  23. Fusion of differentmodality

  24. IncorporatingfMRIpriors

  25. • invert model (obtain posterior pdf) • define the null, e.g.: • define the null, e.g.: • estimate parameters (obtain test stat.) • apply decision rule, i.e.: • apply decision rule, i.e.: if then reject H0 if then accept H0 Bayesian inference (PPM) classical inference (SPM) Hypothesistesting: inference on parameters Frequentist vs. Bayesianapproach

More Related