1 / 14

LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES SORIN MOGA ET ALEXANDRU ISAR

ISETc 2010, Timisoara, November 11, 2010. A Study of the Permutation Schemes Used in Mobile Wireless Communications Ioan Eugen Andor, Lucian Ardelean, Horia Baltă, Maria Kovaci, Marius Oltean and Alexandru Isar. LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES

lucky
Télécharger la présentation

LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES SORIN MOGA ET ALEXANDRU ISAR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISETc 2010, Timisoara, November 11, 2010 A Study of the Permutation Schemes Used in Mobile Wireless Communications Ioan Eugen Andor, Lucian Ardelean, Horia Baltă, Maria Kovaci, Marius Oltean andAlexandru Isar LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES SORIN MOGA ET ALEXANDRU ISAR

  2. ISETc 2010, Timisoara, November 11, 2010 noise - decorrelation - spreading 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 9 1 11 15 2 10 7 4 14 13 8 3 12 6 Permutations: What for? LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES SORIN MOGA ET ALEXANDRU ISAR 2/14

  3. ISETc 2010, Timisoara, November 11, 2010 Permutations: How? output 1 2 - hard 7 2 LE DEBRUITAGE DES IMAGES SONAR EN UTILISANT LA THEORIE DES ONDELETTES SORIN MOGA ET ALEXANDRU ISAR 5 3 4 4 1 5 8 6 6 7 8 3 input - soft Berrou & others, 2004: (j) = (P*j + Q + 1) – N * int((P*j + Q + 1) / N),  0 jN Q=0 ifj=0 mod 4, Q=int(N/2)+P1ifj=1 mod 4, Q=P2ifj=2 mod 4 and Q=int(N/2)+P3ifj=3 mod 4, whereP=19, P1=376, P2=224, P3=600, 3/14

  4. ISETc 2010, Timisoara, November 11, 2010 Permutations in Encryption 99 124 119 123 242 107 111 197 48 1 103 43 254 215171 118 202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192 183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21 4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117 9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132 83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207 208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168 81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210 205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115 96 129 79 220 34 42 44 136 70 238 184 20 222 94 11 219 224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121 231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8 186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138 112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158 225 248 152 17 105 217 42 148 155 30 135 233 206 85 40 223 140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22 4/14

  5. ISETc 2010, Timisoara, November 11, 2010 Permutations in WiMAX • WiMAX uses OFDMA at the physical level • PERMUTATION = a way to allocate physical subcarriers to users • Result: physical resources (subcarriers) are mapped to logical resources (subchannels) • Case of Study: DownLink PUSC 512 • The available subcarriers are SPLIT in three segments • Every segment contains 140 subcarriers (data + pilots) • Frequency spreading: the 140 subcarriers are not adjacent in the physical spectrum 5/14

  6. ISETc 2010, Timisoara, November 11, 2010 Example • Pilots are different for odd/even symbols • Guard band at the edge of the frequency band • Segment0=120 Data+20 Pilots • The data subcarriers are split in 5 subchannels (5 subch x 24 subcarriers) = 120 subcarriers 6/14

  7. ISETc 2010, Timisoara, November 11, 2010 How it’s a subchannel composed? • The basic formula is: • What physical subcarrier corresponds to the logical subcarrier k (k=0,…,23) from the logical subchannel s (s=0,…4) ? • nk= (k+13s) mod 24 • ps(j)=series obtained by shifting s times to the left the basic permutation sequence • DLPermBase = an integer ranging from 0 to 31: is the one providing randomness to the subchannel allocation • Ex. Subcarrier (3,2)=5*nk+[ps(nk mod 5)+0] mod 5 = 5 * 5 +3 = 28 • Meaning: the logical subcarrier 3 from the logical subchannel 2 is the 28th subcarrier available in the physical spectrum (out of the 120 allocated to segment 0). • What is the reason behind…? 7/14

  8. ISETc 2010, Timisoara, November 11, 2010 y2 x2 LLR1 û u DEC1 x1 y1 P C1 C1 Iex01 Channel I I DI I DEC0 x0 y0 C0 Iex10 Turbo-codes Permutations I Interleaver : Rectangular  Random Decorrelation: minimum maximum Spreading: maximum minimum Berrou & others (2004): regular-random Crozier (2000): S-interleaver 8/14

  9. ISETc 2010, Timisoara, November 11, 2010 ids(k) Interleaving distance: d(i, j) = i –j+ (i) – (j), i, j I, i j 700 600 500 400 300 200 100 0 Minimum interleaving distance: dmin = Spreading Degree (SD):sd = suppids(k) / ids(k) k 0 400 800 1200 1600 2000 Distances Spectrum Interleaving / de-interleaving : I  I,with I = 1,2, ... N -1 : I I, with-1( (i) ) = i, iI Distances Spectrum (DS), ids : J = 1, 2, ... , 2NN ids(k) = pairs number(i, j) I I for that d(i, j) = k Random-interleaver DS: 9/14

  10. ISETc 2010, Timisoara, November 11, 2010 Frequencies’ Table 10/14

  11. ISETc 2010, Timisoara, November 11, 2010 Frequency positions DS no[d(i,j)=k] DS for the S-interleaver with S=13 and N=140 d(i,j)=k DS for the interleaver defined by the positions’ sequence of the 140 sub-carriers’ frequencies of a BS segment 11/14

  12. ISETc 2010, Timisoara, November 11, 2010 Frequency positions DS The DSs Parameters 12/14

  13. ISETc 2010, Timisoara, November 11, 2010 Conclusions • DL-PUSC permutation of the sub-carriers’ frequencies is very good. It minimizes the collision probability also for the case of mobile users, spreading the sub-carriers’ frequencies at an important distance; • the fact that there are permutations with a higher spreading degree, lead us to the idea that this permutation can be improved. A more detailed analysis can leads to results more precise. • the Turbo-codes permutations methods can be used to develop more performant methods for permutation of the sub-carriers’ frequencies in WiMAX. 13/14

  14. ISETc 2010, Timisoara, November 11, 2010 References [1] H. Balta, S. El Assad, „Interleaving Distances Spectrum Comparison between Turcocodes Interleavers”, European Microwave Week, 10-15 September 2006, Manchester, UK; [2] S. Dolinar, and D. Divsalar, “Weight Distributions for Turbo Codes Using Random and Non-random Permutations”, TDA Progress Report 42-122, August 15, 1995. [3] IEEE 802.16e standard: "Air Interface for Fixed and Mobile Broadband Wireless Access Systems", December 2005; [4] D. Bojneagu, "The mapping of physical subcarriers to logical subchannels in OFDMA DL-PUSC 512 system", Alcatel-Lucent technical memo; [5] C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel, “Designing good permutations for turbo codes: Toward a single model,” in Proc. IEEE Int. Conf. Commun., Paris, France, Jun. 2004, pp. 341–345. [6] S.N. Crozier, “New High-Spread High-Distance Interleavers for Turbo-Codes”, 20th Biennial Symposium on Communications, Kingston, Ontario, Canada, May 28-31, 2000, pp.3-7. 14/14

More Related