1 / 14

>> W1=[1 1 1 1;1 -j -1 j;1 -1 1 -1;1 j -1 -j] W1 =

>> W1=[1 1 1 1;1 -j -1 j;1 -1 1 -1;1 j -1 -j] W1 = 1.0000 1.0000 1.0000 1.0000 1.0000 0 - 1.0000i -1.0000 0 + 1.0000i 1.0000 -1.0000 1.0000 -1.0000

luella
Télécharger la présentation

>> W1=[1 1 1 1;1 -j -1 j;1 -1 1 -1;1 j -1 -j] W1 =

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. >> W1=[1 1 1 1;1 -j -1 j;1 -1 1 -1;1 j -1 -j] W1 = 1.0000 1.0000 1.0000 1.0000 1.0000 0 - 1.0000i -1.0000 0 + 1.0000i 1.0000 -1.0000 1.0000 -1.0000 1.0000 0 + 1.0000i -1.0000 0 - 1.0000i >> W2=conj(W1)/4 W2 = 0.2500 0.2500 0.2500 0.2500 0.2500 0 + 0.2500i -0.2500 0 - 0.2500i 0.2500 -0.2500 0.2500 -0.2500 0.2500 0 - 0.2500i -0.2500 0 + 0.2500i >> W1*W2 ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

  2. function Xk=dft(xn,N) % Computes Discrete Fourier Transform %Xk: DFT coeff. array over 0<=k<=N-1 (column vector) %xn: N-point finite duration sequence (column vector) %N: Length of DFT n=[0:1:N-1]; % row vector for n k=[0:1:N-1]; % row vector for k WN=exp(-j*2*pi/N); % Wn factor nk=n'*k; %create a N by N matrix of nk values WNnk=WN.^nk; %DFT matrix Xk=WNnk*xn;

  3. function xn=idft(Xk,N) % Computes Discrete Fourier Transform %Xk: DFT coeff. array over 0<=k<=N-1 (column vector) %xn: N-point finite duration sequence (column vector) %N: Length of DFT n=[0:1:N-1]; % row vector for n k=[0:1:N-1]; % row vector for k WN=exp(-j*2*pi/N); % Wn factor nk=n'*k; %create a N by N matrix of nk values WNnk=WN.^(-nk); %IDFT matrix xn=WNnk*Xk/N;

  4. >> x1=[1 2 3 4]';N=4; >> X1=dft(x1,N); >> x2=idft(X1,4) x2 = 1.0000 - 0.0000i 2.0000 - 0.0000i 3.0000 - 0.0000i 4.0000 + 0.0000i

  5. >> x=[1 1 1 1]';N=4;X=dft(x,N); >> w=linspace(0,2*pi,512); >> plot(w/pi,4*abs(sinc(2*w/pi)./sinc(w/2/pi))) >> hold on; plot([0:N-1]*2/N,abs(X),'ro'); >> title('N=4'); hold off

  6. >> x=[1 1 1 1 zeros(1,4)]';N=8;X=dft(x,N); >> w=linspace(0,2*pi,512); >> plot(w/pi,4*abs(sinc(2*w/pi)./sinc(w/2/pi))) >> hold on; plot([0:N-1]*2/N,abs(X),'ro'); >> title('N=8'); hold off

  7. >> x=[1 1 1 1 zeros(1,28)]';N=32;X=dft(x,N); >> w=linspace(0,2*pi,512); >> plot(w/pi,4*abs(sinc(2*w/pi)./sinc(w/2/pi))) >> hold on; plot([0:N-1]*2/N,abs(X),'ro'); >> title('N=32'); hold off

  8. >> n=0:5000;x=cos(0.48*pi*n)+cos(0.52*pi*n); >> L=10;x1=[x(1:L) zeros(1,1024-L)]'; >> X1=dft(x1,1024); >> plot(2*[0:1023]/1024,abs(X1)); title('L=10')

  9. >> n=0:5000;x=cos(0.48*pi*n)+cos(0.52*pi*n); >> L=50;x1=[x(1:L) zeros(1,1024-L)]'; >> X1=dft(x1,1024); >> plot(2*[0:1023]/1024,abs(X1)); title('L=50')

  10. >> n=0:5000;x=cos(0.48*pi*n)+cos(0.52*pi*n); >> L=100;x1=[x(1:L) zeros(1,1024-L)]'; >> X1=dft(x1,1024); >> plot(2*[0:1023]/1024,abs(X1)); title('L=100')

  11. >> n=0:5000;x=cos(0.48*pi*n)+cos(0.52*pi*n); >> L=1024;x1=[x(1:L) zeros(1,1024-L)]'; >> X1=dft(x1,1024); >> plot(2*[0:1023]/1024,abs(X1)); title('L=1024')

  12. >> n=0:3 n = 0 1 2 3 >> mod(n-2,4) ans = 2 3 0 1 >> x=1:4 x = 1 2 3 4 >> x(mod(n-2,4)+1) ans = 3 4 1 2

  13. >> n=0:10; x=10*(0.8).^n; >> y=x(mod(-n,11)+1); >> subplot(2,1,1);stem(n,x); axis([-1 11 0 11]);title('Original sequence') >> subplot(2,1,2);stem(n,y); axis([-1 11 0 11]);title('Circularly folded sequence')

  14. >> X=dft(x',11);Y=dft(y',11); >> subplot(2,2,1);stem(n,real(X));title('Real[DFT[x(n)]]'); >> subplot(2,2,2);stem(n,imag(X));title('Imag[DFT[x(n)]]'); >> subplot(2,2,3);stem(n,real(Y));title('real[DFT[x((-n))11]]'); >> subplot(2,2,4);stem(n,imag(Y));title('imag[DFT[x((-n))11]]');

More Related