1 / 42

Applications of Programming Language Theory: Java Security

Applications of Programming Language Theory: Java Security. David Walker COS 441 With slides stolen from: Steve Zdancewic University of Pennsylvania. Mobile Code. Modern languages like Java and C# have been designed for Internet applications and extensible systems

luke
Télécharger la présentation

Applications of Programming Language Theory: Java Security

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applications of Programming Language Theory:Java Security David Walker COS 441 With slides stolen from: Steve Zdancewic University of Pennsylvania

  2. Mobile Code • Modern languages like Java and C# have been designed for Internet applications and extensible systems • PDAs, Cell Phones, Smart Cards, … applet applet applet web browser operating system COS 441

  3. Applet Security Problems • Protect OS & other valuable resources. • Applets should not: • crash browser or OS • execute “rm –rf /” • be able to exhaust resources • Applets should: • be able to access some system resources (e.g. to display a picture) • be isolated from each other • Principles of least privilege and complete mediation apply COS 441

  4. Java and C# Security • Static Type Systems (Bytecode Verification) • Memory safety and jump safety • Enforces encapsulation boundaries (e.g. private fields) • Run-time checks for • Array index bounds • Downcasts • Access controls • Garbage Collected • Eliminates memory management errors • Library support • Cryptography, authentication, … Most of the course This lecture COS 441

  5. Access Control for Applets • What level of granularity? • Applets can touch some parts of the file system but not others • Applets can make network connections to some locations but not others • Different code has different levels of trustworthiness • www.l33t-hax0rs.com vs. www.java.sun.com • Trusted code can call untrusted code • e.g. to ask an applet to repaint its window • Untrusted code can call trusted code • e.g. the paint routine may load a font • How is the access control policy specified? COS 441

  6. Outline • Java Security Model (C# similar) • Stack inspection • Concrete examples • Semantics from a PL perspective • Formalizing stack inspection • how exactly does it work? • Reasoning about programs that use stack inspection COS 441

  7. Java Security Model VM Runtime Security Policy a.class b.class c.class d.class e.class Permissions Domain A Permissions Domain B ClassloaderSecurityManager http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-specTOC.fm.html COS 441

  8. Kinds of Permissions Permissions are implemented by the java.security.Permission class for which there are many subclasses perm = new java.io.FilePermission("/tmp/abc","read"); java.security.AllPermission java.security.SecurityPermission java.security.UnresolvedPermission java.awt.AWTPermission java.io.FilePermission java.io.SerializablePermission java.lang.reflect.ReflectPermission java.lang.RuntimePermission java.net.NetPermission java.net.SocketPermission … COS 441

  9. Code Trustworthiness • How does one decide what protection domain the code is in? • Source (e.g. local or applet) • Digital signatures • How does one decide what permissions a protection domain has? • Configurable – administrator file or command line • Enforced by the classloader COS 441

  10. Classloaders • In order to pull new code into the virtual machine, we use an object from the ClassLoader class • A class loader will look in the file system, or across the network for a class file, or possibly dynamically generate the class • When loading the first class of an application, a new instance of the URLClassLoader is used. • When loading the first class of an applet, a new instance of the AppletClassLoader is used. • Class loaders are responsible for placing classes into their security domains • AppletClassLoader places classes in domains depending on where they are from • Other ClassLoaders places classes in domains based on digital signatures, or origin (such as local file system) COS 441

  11. Classloader Hierarchy Primordial ClassLoader ClassLoader SecureClassLoader URLClassLoader AppletClassLoader COS 441

  12. Associating Privileges with Domains grant codeBase “http://www.l33t-hax0rz.com/*” { permission java.io.FilePermission(“/tmp/*”, “read,write”); } grant codeBase “file://$JAVA_HOME/lib/ext/*” { permission java.security.AllPermission; } grant signedBy “trusted-company.com” { permission java.net.SocketPermission(…); permission java.io.FilePermission(“/tmp/*”, “read,write”); … } Policy information stored in: $JAVA_HOME/lib/security/java.policy $USER_HOME/.java.policy (or passed on command line) COS 441

  13. Summary so Far • We’ve seen what privileges are and how to assign them to fragments of code • Next: how does the system use privileges to enforce an access control policy? COS 441

  14. Example Trusted Code Code in the System protection domain void fileWrite(String filename, String s) { SecurityManager sm = System.getSecurityManager(); if (sm != null) { FilePermission fp = new FilePermission(filename,“write”); sm.checkPermission(fp); /* … write s to file filename (native code) … */ } else { throw new SecurityException(); } } public static void main(…) { SecurityManager sm = System.getSecurityManager(); FilePermission fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } COS 441

  15. Example Client Applet code obtained from http://www.l33t-hax0rz.com/ class UntrustedApplet { void run() { ... s.FileWrite(“/tmp/foo.txt”, “Hello!”); ... s.FileWrite(“~dpw/grades.txt”, “Nick: A+”); ... } } COS 441

  16. Stack Inspection • Stack frames are annotated with their protection domains and any enabled privileges. • During inspection, stack frames are searched from most to least recent: • fail if a frame belonging to someone not authorized for privilege is encountered • succeed if activated privilege is found in frame COS 441

  17. Stack Inspection Example Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } COS 441

  18. Stack Inspection Example Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp COS 441

  19. Stack Inspection Example void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); … } Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp COS 441

  20. Stack Inspection Example void fileWrite(“/tmp/foo.txt”, “Hello!”) { fp = new FilePermission(“/tmp/foo.txt”,“write”) sm.checkPermission(fp); /* … write s to file filename … */ void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); … } Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp COS 441

  21. Stack Inspection Example void fileWrite(“/tmp/foo.txt”, “Hello!”) { fp = new FilePermission(“/tmp/foo.txt”,“write”) sm.checkPermission(fp); /* … write s to file filename … */ void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); … } Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp Succeed! COS 441

  22. Stack Inspection Example void run() { … s.FileWrite(“~dpw/grades.txt”, “Nick: A+”); } Policy Database main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp COS 441

  23. Stack Inspection Example void fileWrite (“~dpw/grades.txt”,“Nick: A+”) { fp = new FilePermission(“important.txt”, “write”); sm.checkPermission(fp); void run() { … s.FileWrite(“~dpw/grades.txt”, “Nick: A+”); } Policy Database Fail main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run(); } fp COS 441

  24. Other Possibilities • The fileWrite method could enable the write permission itself • Potentially dangerous, should not base the file to write on data from the applet • A trusted piece of code could disable a previously granted permission • Terminate the stack inspection early COS 441

  25. Stack Inspection Algorithm checkPermission(T) { // loop newest to oldest stack frame foreach stackFrame { if (local policy forbids access to T by class executing in stack frame) throw ForbiddenException; if (stackFrame has enabled privilege for T) return; // allow access if (stackFrame has disabled privilege for T) throw ForbiddenException; } // end of stack if (Netscape || …) throw ForbiddenException; if (MS IE4.0 || JDK 1.2 || …) return; } COS 441

  26. Two Implementations • On demand – • On a checkPermission invocation, actually crawl down the stack, checking on the way • Used in practice • Eagerly – • Keep track of the current set of available permissions during execution (security-passing style Wallach & Felten) + more apparent (could print current perms.) • more expensive (checkPermission occurs infrequently) COS 441

  27. Stack Inspection • Stack inspection seems appealing: • Fine grained, flexible, configurable policies • Distinguishes between code of varying degrees of trust • But… • How do we understand what the policy is? • Semantics tied to the operational behavior of the program (defined in terms of stacks!) • How do we compare implementations • Changing the program (e.g. optimizing it) may change the security policy • Policy is distributed throughout the software, and is not apparent from the program interfaces. • Is it any good? COS 441

  28. Stack Inspection Literature • Stack Inspection: Theory and VariantsCédric Fournet and Andrew D. Gordon • Use operational semantics like in class • Understanding Java Stack InspectionDan S. Wallach and Edward W. Felten • Formalize Java Stack Inspection using a special logic of authentication COS 441

  29. Formalizing Stack Inspection

  30. Abstract Stack Inspection • Abstract permissions • p,q Permissions (left abstract in the theory) • R,S Sets of permissions (models an entity) • Examples:System = {fileWrite(“f1”), fileWrite(“f2”),…}Applet = {fileWrite(“f1”)} COS 441

  31. lsec Syntax • Language syntax:e ::= expressions x variablelx.e function e1 e2 application R{e} framed expr enable p in e enable test p then e1 else e2 check perm. fail failurev ::= x | lx.e valueso ::= v | fail outcomes COS 441

  32. Modelling the Classloader • Models the Classloader that marks the (unframed) code with its protection domain:Load(R,x) = x Load(R,lx.e) = lx. R{ Load(R,e) } Load(R,e1 e2) = Load(R,e1) Load(R,e2) Load(R,enable p in e) = enable p in Load(R,e) Load(R,test p then e2 else e2) = test p then Load(R,e1) else Load(R,e2) Load(R,fail) = fail COS 441

  33. Example writeFile = lfileName.System{ test fileWrite(fileName) then “f2 contents” // primitive file IO else fail } Applet{writeFile “f2”}-->* failSystem{writeFile “f2”}-->* “f2 contents” COS 441

  34. lsec Operational Semantics • Evaluation contexts:E ::= [] Hole E e Eval function v E Eval arg enable p in E Tag on stack frame R{E} Stack frame • E models the control stack COS 441

  35. lsec Operational Semantics E[(x.e) v] --> E[e{v/x}] E[enable p in v] --> E[v] E[R{v}] --> E[v] E[fail] --> fail E[test p then e else f] --> E[e] if Stack(E) |-- p E[test p then e else f] --> E[f] if (Stack(E) |-- p) COS 441

  36. Formal Stack Inspection E = Applet{System{[]}}e = test fileWrite(“f2”) then “f2 contents” else fail When does stack(E) allow permissionfileWrite(“f2”)? Stack(E) |-- fileWrite(“f2”) COS 441

  37. Formal Stack Inspection Structure of Stacks: s ::= . (Empty Stack) | s.R (Stack for code of principal R) | s.enable(p) (Privelege p enabled) COS 441

  38. Stack of an Eval. Context Stack([]) = . Stack(E e) = Stack(E)Stack(v E) = Stack(E)Stack(enable p in E) = enable(p).Stack(E) Stack(R{E}) = R.Stack(E) Stack(E’) = Stack(Applet{System{[]}}) = Applet.Stack(System{[]}) = Applet.System.Stack([]) = Applet.System. COS 441

  39. s|-- p p  R s.R|-- p s|-- p s.enable(q)|-- p s|= p s.enable(p)|-- p Abstract Stack Inspection . |-- p empty stack axiom protection domain check p  q irrelevant enable check enable COS 441

  40. p  R x.R|= p x|= p x.enable(q)|= p Abstract Stack Inspection . |= p empty stack enables all enable succeeds irrelevant enable COS 441

  41. What Can You Do with an Operational Semantics? • Reason about optimization: Which programs are equal? (Is the optimized program the same as the unoptimized program?) • Eg: • Let C[] be an arbitrary program context. • Define e = e’ iff • for all C[], C[e] terminates whenever C[e’] terminates COS 441

  42. Conclusions • What security properties does the Java security model guarantee? • What optimizations are legal? • Formal semantics helps us find the answers & suggests improvements COS 441

More Related